
ISPF Developer Tips and Tricks

Version 1.9

6 June 2021 ISPF Developer Tips/Tricks Page 2

Contents
Dedication ... 6

Caveats and Disclaimer .. 6

Where to Find Updates ... 6

How to Contribute ... 7

Revision History .. 8

Contributors .. 10

Authors/Editors/Contributors .. 10

Contributors who may not know it .. 10

Introduction ... 10

Sample PDS .. 11

General Comments ... 12

Installing Your Application ... 13

Making the Application Available ... 13

Sample Stub .. 13

Sample PLP Definition ... 14

Adding to an Existing ISPF Menu .. 14

Add to the ISPF Commands Table .. 14

Dynamic ISPF Menus .. 15

Disabling Keylists .. 15

ISPF Panels .. 16

Panel Basics.. 16

Testing Panels ... 16

Tutorial Panels .. 17

Scrolling Panels ... 18

Field Level Help ... 19

Using Point and Shoot (PNS) with ISPF Panels .. 20

PopUp Panels ... 23

Dynamically Turning Off PFSHOW .. 24

Progress Popup Panels ... 25

Action Bars and Pull-downs ... 27

Panel Rexx .. 29

Basic Example ... 29

Verify a Data Set Name within Panel REXX (1.2) ... 30

Dynamically Changing the colors of the Text in ISPF Edit .. 31

Panel Scrolling Fields .. 35

6 June 2021 ISPF Developer Tips/Tricks Page 3

Dynamic Areas .. 37

Dynamically Set a Function Key to a value (e.g. RFIND) ... 40

ISPF Skeletons ... 41

Simple Skeleton .. 42

Skeleton with REXX .. 43

Using the TSO Stack ... 43

Using TSO Commands .. 44

Passing a Variable to the Skeleton REXX (1.3) .. 45

ISPF Tables .. 46

Find .. 46

Enabling RFIND ... 47

Locate a Row ... 50

Selecting Multiple Rows for Processing ... 51

Full Example .. 52

Adding Rows to a Table When Needed ... 63

More about table display ... 67

Preserve line commands for multiple selections ... 67

Table filter using existing variable name .. 67

XISPTBL : Subroutine for ISPF table handling ... 69

Short description .. 69

ISPF Messages ... 70

ISPF Edit Macros .. 72

Centering Text using an Edit Macro ... 73

Invoking ISPF Edit with a Macro .. 74

Define the Initial Macro Using an ISPF Variable (1.2) .. 75

Passing Data to an Edit Macro .. 76

Invoking an Edit Macro on All Members of a PDS ... 77

Changing ISPF Edit Commands with Macros .. 78

Symbolic Handling ... 80

Library Services .. 82

LMDLIST – List Data Sets ... 82

Quick (Lightening Fast) List of Data Sets (1.2) .. 83

LISTC .. 83

Catalog Search Interface ... 83

Miscellaneous ... 84

Browsing Data in a REXX Stem... 84

6 June 2021 ISPF Developer Tips/Tricks Page 4

Sample ISPF Notepad Application ... 85

Other Tricks ... 86

Edit Macro or TSO Command – same REXX Code ... 86

ISPF in Batch .. 87

Randomize DDname and Table Names .. 88

Based on the REXX Exec Name .. 88

Using the REXX Random Function .. 88

Another Random String .. 88

Using /dev/random ... 89

Getting the DDname from the System .. 89

Stem Sort .. 90

Full Stem Sort example .. 91

More on Stem Sorting using BPXWUNIX ... 91

Converting the User Provided Data Set Name to a Full Data Set Name 92

Default ISPF Terminal Type .. 92

Sharing REXX Variables, including stems, with other REXX exec’s 92

Convert a Number to Human Readable ... 93

Useful Tools .. 95

ISRDDN ... 95

ISPLIBD ... 95

ALTLIB Display .. 95

Debugging Hints/Tips .. 95

Displaying the ISPF Panel Name ... 95

ISPF Dialog Test .. 95

REXX Trace ... 95

Miscellaneous Tips .. 96

Debugging ISPF Edit Macros ... 97

Appendix ... 98

Useful Tools .. 98

CMT ... 98

LOADISPF/DROPISPF .. 98

REXXFORM .. 99

STEMEDIT ... 100

TRYIT .. 100

Other Tools of Note (meaning they are worth checking out) .. 103

PDS (the Swiss Army Knife of Utiltiies) .. 103

6 June 2021 ISPF Developer Tips/Tricks Page 5

PDSEGEN ... 103

ISPFCMD... 103

STEPLIB (1.2) .. 104

Useful Websites .. 105

6 June 2021 ISPF Developer Tips/Tricks Page 6

Dedication
This document is dedicated, with extreme thanks, to those who came before us. To the

Blue Berets who contributed and managed the MVT Mods Tapes, to those who freely

shared their code and documentation via cards, tapes, Gopher, listservs, and then the

Web, to those who contribute to the CBTTape, to those who speak at SHARE and other

organizations sharing their experience and knowledge. And to all the IBMers who share via

the various listservs, forums, and PMRs. We are all better developers because of the help

of others, whether it is overt from a document or presentation, or by allowing us to learn

from their code. This document is released in the spirit that you, our readers, will continue

this tradition.

Caveats and Disclaimer
This document and the code samples are provided without warranty or guarantee. If you

use any of the code for production purposes, you should thoroughly test and validate it

before use.

There is no copyright associated with the sample code so feel free to use any/all of it within

your own code (after testing and validation of course). The term, YMMV (your mileage may

vary) applies.

Where to Find Updates
Updated versions will be posted to www.lbdsoftware.com, and www.cbttape.org in file 990.

http://www.lbdsoftware.com/
http://www.cbttape.org/

6 June 2021 ISPF Developer Tips/Tricks Page 7

How to Contribute
This document is intended to be a living document and that requires regular updates. If you

would like to provide sample code, and the prose to go with it, please e-mail

ispfdev.tips@gmail.com and one of the volunteer team members will acknowledge your

communication.

Contribution guidelines:

1. Code should follow the sample naming conventions:

a. PNxxx for Panels

b. RXxxxx for REXX

c. SKxxx for Skeletons

2. Provide it in TSO Transmit format to prevent EBCDIC/ASCII conversion issues

during transport.

a. Put the elements in a PDS

b. Issue the TSO command: XMIT x.y DS(your.pds)

OUTDS(contribution.XMIT)

i. Note x.y can be anything

c. Binary download and e-mail the contribution.XMIT data set

3. Prose may be plain text or in Word format.

4. Suggest where in the document to place it.

5. Examples should be generic and not depend upon products or tools that are not

available on all systems (that is – don’t assume every site has product xyz).

There is no guarantee that any contributions will be used – that is left to the discretion of

the editors and will mostly depend on their available time.

Updates to this document and the related samples data set will be announced on the ibm-

main listserv (join/view at https://listserv.ua.edu/archives/ibm-main.html) and posted at

www.lbdsoftware.com.

mailto:ispfdev.tips@gmail.com
https://listserv.ua.edu/archives/ibm-main.html
http://www.lbdsoftware.com/

6 June 2021 ISPF Developer Tips/Tricks Page 8

Revision History
Version 1.9 5 June 2021 1. PNDYNPFK – dynamically set a PFK value for for

an application (WJ)
2. RXSHRVAR to demonstrate how to share rexx

variables between rexx exec’s

Version 1.8 15 Apr 2021 3. Info on Random string
4. Section on Table Handling (Thanks Willy Jensen)
5. Sample table handling subroutine (WJ)

Version 1.7 13 May 2020 6. Document how to use an Edit macro to change text
with &’s

7. Add info on how to have one REXX exec run as
either an Edit Macro or TSO Command (thx to Bob
Bridges)

8. Add RXNOTEPD – a sample ISPF notepad
application

9. Exciting info on how to dynamically add rows to a
table as needed – great for very large tables

10. Fix to PNVDSN sample panel

Version 1.6 26 January
2020

11. Update PNREXX to use 4-digit year and routine to
insert commas for long numbers (thx to Doug
Nadel)

12. Update PNVDSN to check for the F3/END key and
bypass the check

13. Updated RXTAB with cleaner Find and RFind
14. Created RXTABLE from RXTAB with improved

RFIND command table definitions

Version 1.5 27 December
2019

15. Update sample ISPF Stub (thx to Tom Conley)
16. Update info on dynamic edit color change using

panel rexx

Version 1.4 26 December
2019

17. RXPOPKEY code and example updated to improve
code.

18. Update LOADISPF section to reference correct
sample name RXPNSL

19. Add reference to RXISPFL to the LOADISPF
section as a full example

20. Elaborated on the use of LOADISPF.
21. Enhance PNTAB and RXTAB for better clarity in

table handling.
22. Add PNEDITHL, RXEDITHL, and RXMEDHL to

demonstrate updating colors in an ISPF Edit panel
dynamically.

Version 1.3 08 October
2019

23. Add document version to sections added or
updated to easily identify what changed.

24. How to pass a variable from your REXX Exec to
the Skeleton REXX for use. Thanks to a tip from
John Kalinich.

25. Add subroutine to change a numeric variable from
all numbers to human readable (e.g. 1981 to 1,981)

Version 1.2 22 July 2019 26. Information on the ZUSERMAC variable to define
the ISPF Edit Initial Macro.

27. Information on using LISTC and CSI to get a list of
data sets as an alternative to LMDLIST.

6 June 2021 ISPF Developer Tips/Tricks Page 9

28. Update to PNVDSN to clean up the panel REXX
dsname verification code.

29. Clarified the XMIT file name in the ZIP file.
30. Add to the Appendix information on the CBT Tape

File 452 version of Dynamic STEPLIB
31. Miscellaneous editorial changes for clarity.

Version 1.1 31 May 2019 32. Several minor corrections from W. Jensen along
with a new randomized example

33. Change date in footer
34. Sample Skeleton REXX with TSO services from W.

Jensen
35. Sample using BPXWDYN for a random ddname

from W. Jensen.
36. Section on using LISTDSI to return a fully qualified

data set name.
37. Additional sample random routines for ddname or

table names.
38. Add info on PANELID ON/OFF
39. Update the How to Contribute section
40. Added a chapter on Other Tools
41. Added section on Stem Sorting from John Kalinich.

Version 1.0 18 April 2019 Initial release

6 June 2021 ISPF Developer Tips/Tricks Page 10

Contributors

Authors/Editors/Contributors
Lionel B. Dyck John Kalinich Bruce Koss

Willy Jensen Bob Bridges

Contributors who may not know it
Doug Nadel via his
Presentation ISPF Panels
Beyond the Basics which
can be found at
https://sites.google.com/site/
schlabb/home/hints-tips/ispf

Thomas Conley John McKown via IBM-Main

Bill Godfrey (via IBM-Main) Albert Ferguson via IBM-Main Robert Prins

Marvin Knight

Introduction
This document is intended to provide the ISPF application developer, whether full time or

ad hoc, with tips and tricks to exploit the capabilities of ISPF within the z/OS environment.

There are a few tools that will be mentioned in the tips that the contributors feel will be

useful. See the Appendix for details on those tools.

The examples are provided in REXX as it is easy to quickly develop application prototypes,

many of which can be used without further efforts. In some cases, the prototype will need to

be translated into a compiled language once the prototype has proven the design and

function.

Become familiar with the ISPF Edit MODEL command. This great feature will provide

sample code for ISPF Panels, Skeletons, REXX, and more.

Download, or bookmark, the ISPF publications from IBM for the version of z/OS that you

will be working with. Given the level of ISPF development, it is unlikely that there will be

new features or functions added to newer versions –one never knows, however one can

hope.

To accompany this document, a PDS has been created with samples for many of the topics

discussed. This PDS is distributed in TSO Transmit (XMIT) format and is included in the

package ZIP file with a file suffix of .XMIT. This file must be processed by the TSO

RECEIVE command after being uploaded to z/OS using a binary transfer method into a

sequential data set with RECFM=FB and LRECL=80.

 RECEIVE INDS(upload.xmit)

The topics with examples below will have a box with the example member names that

looks like this:

Member-name

Note that the sample code may include additional comments from what is included in the

examples in this document.

https://sites.google.com/site/schlabb/home/hints-tips/ispf
https://sites.google.com/site/schlabb/home/hints-tips/ispf

6 June 2021 ISPF Developer Tips/Tricks Page 11

Sample PDS
Within the Sample PDS are members that contain ISPF Panels, Skeletons, and REXX

code. All are fully functional for demonstration purposes.

Member $$README provides additional information about the samples and member

$$XMIT provides information on the two members in TSO Transmit format.

Included is an ISPF dialog that demonstrates many of the ISPF table handling function

using the Sample PDS.

To use the dialog:

1. Get into ISPF 3.4 and list the Sample PDS data set name

2. Then enter M to display the Member List

3. Scroll down to $DEVISPF

4. Enter EX next to it to begin the dialog which displays an ISPF table of the members

and supports several commands and row selection options:

Hint: Execute (x) the $DEVCPY exec to copy these samples from the sample library into

your own SYSEXEC and ISPPLIB libraries so that you can make changes, experiment, and

learn.

6 June 2021 ISPF Developer Tips/Tricks Page 12

General Comments
When writing code, it is important that others be able to read, understand, and if necessary,

update and enhance (fix) the code. The best way to do that is to follow coding practices

that have been developed over the past several decades:

1. Use meaningful variable names where possible. ISPF variables are limited to 8

characters, while REXX variables can be longer. Variables may be upper, lower, or

mixed case.

a. ISPF variable: UserName

b. REXX variable: TSO_User_Name

2. Document the code with comments

a. There are many styles of comments and the best one is what the developer

(you) are most comfortable in using. Some like to put comments on the

individual lines of code, while others like to put comments in blocks before

code sections.

b. An ISPF Edit macro, CMT, mentioned in the Appendix can make it

significantly easier to enter comments. It creates block comments and

supports entering comments from the command line or via a popup panel.

c. REXX code supports comments – so do ISPF Messages, Panels, and

Skeletons. That means that you can add useful comments in all those

elements so that others will know what you were thinking when you

developed them.

d. Not everything requires comments. Too many comments can get in the way

of the code. Be judicious and not verbose. Look at the code as if you were

not the author and if you can understand it without comments then that is the

ideal, otherwise add comments to make the coding understandable for

whomever comes after you.

3. If there is a complex way to write code and a simple way, choose the simple way.

You never know who may have to pick up your code in 5, 10, 20, or more years and

fix something that you never anticipated.

4. Where possible, use standard system routines and interfaces.

6 June 2021 ISPF Developer Tips/Tricks Page 13

Installing Your Application
Once you develop your ISPF application, the next decision is how to make it available to

your users. The first thing to consider is how will the application be executed, or how will

the elements be accessed. The second thing to consider is how will the user find the

application so that they can use it.

Making the Application Available
Once your application is completed, the various elements (execs, panels, programs,

skeletons, messages, tables, etc.) need to be made available to the users.

There are three ways to do this:

1. Copy the elements into libraries that are already allocated to the users TSO Logon

(via Logon Proc or Logon Clist).

2. Write a stub Exec that performs the dynamic allocations and then invokes the

application which must be installed in a library in the users SYSEXEC or SYSPROC

allocations.

3. Use the Product Launch Point (PLP) discussed below.

Sample Stub
This is an example to invoke the RACF ISPF dialog and it is from Tom Conley’s Dynamic

ISPF Starter Set package which can be found in File 495 at www.cbttape.org where you

can find samples for you to use for over 100 different software packages.

/* rexx */

/***/

/* This exec invokes IBM's RACF dialog. */

/***/

parse arg ztrail

address tso "ALTLIB ACT APPL(CLIST) DA('SYS1.HRFCLST')"

address ispexec "LIBDEF ISPPLIB DATASET ID('SYS1.HRFPANL') STACK"

address ispexec "LIBDEF ISPMLIB DATASET ID('SYS1.HRFMSG') STACK"

address ispexec "LIBDEF ISPSLIB DATASET ID('SYS1.HRFSKEL') STACK"

address ispexec "SELECT PANEL(ICHP00) NEWAPPL(RACF) OPT("ztrail")",

 "PASSLIB SCRNAME(RACF)"

address ispexec "LIBDEF ISPPLIB"

address ispexec "LIBDEF ISPMLIB"

address ispexec "LIBDEF ISPSLIB"

address tso "ALTLIB DEACT APPL(CLIST)"

file:///D:/doc/ISPF/www.cbttape.org

6 June 2021 ISPF Developer Tips/Tricks Page 14

Sample PLP Definition
This is how that would look in a PLP definition:

----------------------------- Product Launch Point Management -

 Command ===>

 Enter, Verify, or Change (* = required)

 *Application Name SYNCM___ A unique application name 1-8 characters

 Application ID SX21 1-4 characters for application id

 *Description Syncsort ISPF Messages Dialog_______________

 Step Library ___

 ISPF Load Library 'SYS2.SYNC.MFX210.SYNCLOAD'________________

 ISPF Message Dataset 'SYS2.SYNC.MFX210.SYNCMLIB'________________

 ISPF Panel Dataset 'SYS2.SYNC.MFX210.SYNCMLIB'________________

 ISPF Skeleton Dataset ___

 ISPF Table Dataset ___

 Clist Library _____________________________________

 REXX EXEC Library _____________________________________

 *Application Start (select one)

 Command ___

 Program SS21MSG3 Parm ___________________________________

 ISPF Panel ________ Panel option ___________________________

 Additional Datasets: No_ Yes to add more

Adding to an Existing ISPF Menu
The application can be added to an existing ISPF Selection Panel (menu) where it can be

found by those users who are aware of that Panel. In some shops, that means adding the

application to ISR@PRIM as one more in a long list of ISPF applications. Others will add

the application to a menu that is accessible from ISR@PRIM.

The advantage is that your application is now on a Selection Panel and thus available to

your intended target users.

The disadvantage is that your application is on a Selection Panel that your intended target

users, including new users, may not be aware of. If they are aware of the Panel, they may

not be aware that they must scroll down to find your application.

Another challenge is making sure that all copies of the Selection Panel are updated, this is

especially true for ISR@PRIM and ISP@MSTR, for which there may be multiple versions in

the various libraries in the ISPPLIB allocation, and all dependent upon the order they are

allocated.

Add to the ISPF Commands Table
This provides a fast path to your application from any ISPF command line. This is an

excellent option, provided the application name is unique. (I once installed an ISPF

application that had a command identical to one in the ISPF Command Table. That caused

a lot of confusion, until it was researched).

Keep in mind that even after you add a command to the command Table, not everyone will

know it’s there. You may want to add it, as well, to an ISPF menu so users will see it.

6 June 2021 ISPF Developer Tips/Tricks Page 15

Dynamic ISPF Menus
This is a plug for a tool called the Product Launch Point (PLP), which is an open source

dynamic ISPF menu. This tool can be found at http://lbdsoftware.com/ispftools.html, and at

http://www.cbttape.org in file 312.

PLP is table driven ISPF menu. Add the command PLP to the ISPF commands table and

your user has immediate access to a searchable, scrollable, flexible ISPF menu.

PLP supports multiple menus based on how it is invoked, and it supports sub-menus.

The advantages are numerous, among them are:

1. Easily add, or update, an application.

2. When adding an application PLP allows defining libraries that will be

a. STEPLIB’d (if a dynamic STEPLIB command is available, if you don’t have a

dynamic STEPLIB command see www.cbttape.org for file 452 for a free one

that works very well)

b. LIBDEF’d for ISPF libraries

c. ALTLIB for CLIST and REXX libraries

d. Specify an Application ID

e. Invoke a Panel, Program, REXX/Clist – and pass parms

PLP is used at a number of large, and small, z/OS installations very successfully as they

have found it greatly reduces the efforts to manage and maintain menus for access to

applications, while at the same time making it very easy to find and execute the installed

applications.

When PLP is initially installed the very first use must be with the ADMIN keyword to create

the initial PLP table.

Disabling Keylists
Some sites have disabled application keylists via the ISPF Configuration Table, while

others allow them. If you want to disable them for the period of your dialog you can use this

code:

"VGET (ZKLUSE) PROFILE" /* Obtain Keylist */

SAVE_ZKLUSE = ZKLUSE /* Save Keylist */

ZKLUSE = "Y" /* Keylist on */

"VPUT (ZKLUSE) PROFILE" /* Set Keylist */

… code…

ZKLUSE = SAVE_ZKLUSE /* Restore */

"VPUT (ZKLUSE) PROFILE" /* Set Keylist */

http://lbdsoftware.com/ispftools.html
http://www.cbttape.org/
http://www.cbttape.org/

6 June 2021 ISPF Developer Tips/Tricks Page 16

ISPF Panels

Panel Basics
Some things to consider when developing an application using ISPF:

1. Use a consistent style for all panels in the application.

2. Keep the panel body to 23 (or less) records so that any user with a 3270 model 2

(24x80) will be able to display the panel.

3. Use hilite(uscore) for input fields to easily identify them on the panel.

4. Provide a tutorial panel for each panel where it makes sense.

5. When referencing a program function key use F# instead of PF#. Keyboards have

not had the PF prefix for the function keys for decades so the newer 3270 users

may not grasp what a PF key is.

6. When a small amount of information is required in a dialog consider using a popup.

7. When a dialog is processing something that takes more than a few seconds

consider using a popup to display progress information.

Testing Panels
When developing ISPF Panels, it is easy to make a typographic error in the panel code.

Using ISPF Test can be a challenge (but one you should take the time to learn). However,

there is a tool included with the samples call TRYIT that can be used to validate your ISPF

Panels easily and while you’re still in ISPF Edit (you don’t have to save the member to test

it).

The TRYIT command syntax that you will use for ISPF Panels is:

TRYIT For any Panel

TRYIT TUT For Tutorial Panels

TRYIT POP For Popup Panels

If there are any errors then there will be a short message indicating there is an issue and

pressing F1 will display the longer, more detailed message with more information.

See the Appendix for more information on TRYIT.

ALWAYS test your ISPF Panels with a 3270-2 (24x80) terminal configuration. This is the

lowest common terminal type available with most 3270 emulators. Many users will, by

default, be using that terminal type until they become more accustomed to the capabilities

of 3270 terminal and move on to a mod 3, 4, or 5 terminal configurations, or define their

own custom configuration (e.g. 60x160). If the panel is too wide or has too many body

records, then it will fail when displayed.

6 June 2021 ISPF Developer Tips/Tricks Page 17

Tutorial Panels
Most, not all, ISPF panels should have a tutorial behind it. The tutorial is accessed using

the HELP command (typically assigned to the F1 key).

Some things to always consider with Tutorial panels:

1. If you have multiple Tutorial panels, then connect them using the &ZUP and

&ZCONT commands.

2. If you only have one Tutorial panel then set &ZCONT to the panel so that when the

user presses the enter key, they will remain on that panel.

3. With multiple Tutorial panels:

a. The 1st always has &ZCONT referencing the next panel

b. The 2nd thru the last has &ZUP referencing the previous panel and &ZCONT

referencing the next

c. The last should have &ZCONT referencing the 1st Tutorial panel.

4. Try to keep the Tutorial panel body to 23 (or less) records. This is to allow the

Tutorial to be viewed on a 3270 model 2 terminal (this configuration supports 24

rows, but you should allow for at least 1 row for an ISPF Split Screen line.

5. All the Tutorial panels should have the same general layout for consistency.

6. The user can ‘scroll’ between Tutorial panels using function keys F10 (Previous)

and F11 (Next).

7. For complex dialogs consider a Tutorial Menu panel.

a. Use the ISPF Edit MODEL command

b. Select F0 (PANFORM)

c. Select F5 (TUTORIAL)

6 June 2021 ISPF Developer Tips/Tricks Page 18

Scrolling Panels
PNAREA and RXAREA

There are times that the data on a panel is more than the depth of the user screen and

rather than creating multiple panels (the recommended technique), it is easy to define a

panel area that allows scrolling.

Note that this will work for data entry panels, tutorial panels, and popup panels (table

panels are already scrollable).

This sample REXX will display the following panel until the F3 (END) is pressed.

/* rexx */

 Address ISPExec

 do forever

 'display panel(pnarea)'

 if rc > 0 then leave

 end

This is part of the Panel:

)attr default(%+_)

} area(SCRL) Extend(ON)

)Body Expand(\\)

%Sample -\-\(~Scrolling Panel Demo%)\-\- Sample

%Command ===>_ZCMD +

+

+ Sample of a Scrolling Area - use &zpf07 and &zpf08 keys to scroll +

+ And then%F3+to Exit.

%---

}help --}

)Area Help

+With thanks to Mr. John Kalinch for allowing us to 'borrow' the FAQ for the

+PDS 8.6 command (found on the CBTTape File 182 at www.cbttape.org)

+

+ PDS Command Processor FAQ

. . .

)Init

)PROC

)END

Note that there is a size limit, which I suspect is byte related, but for this example at 1000

records in the area works and with a few more it fails (at 1023). If you have that many

records it may be better to use ISPF Browse (or Edit or View) and place the data into a

data set.

Be aware that when pressing ENTER the panel will automatically scroll back to the top.

6 June 2021 ISPF Developer Tips/Tricks Page 19

Field Level Help
PNFLDH, PNFLDH1, PNFLDH2, and RXFLD

For some applications having more detailed information for specific fields on the panel is

helpful. IBM has provided the ability to have Field Level Help panels that make this very

easy by allowing the user to place the cursor on a specific entry field and then press F1 to

display a specific Help panel.

Here is a sample data entry panel with Field Level Help:

)ATTR DEFAULT(%+_)

 $ TYPE(INPUT) INTENS(LOW) hilite(uscore)

)BODY Expand(\\)

+\-\%Sample Panel with Field Level Help+\-\

%Command ===>_zcmd

%

+ Place the cursor on any of the fields below and press F1 to

+ view the Field Level Help.

+

+ Field one: $z + Sample Input Field

+ Field two: $z + Sample Input Field

+

 +Press%F3+when ready to exit.

)INIT

 .zvars = '(field1 field2)'

)PROC

)Help

 Field(field1) panel(pnfldh1)

 Field(field2) panel(pnfldh2)

)END

The Field Level Help is defined in the)HELP section of the panel using the FIELD

statements, where the field name, enclosed in parenthesis, is the entry field on the panel.

This is one of the sample Field Level Help panels. Notice this is a normal popup panel,

although field level help does not require a popup, that is the typical usage.

)ATTR DEFAULT(%+_)

)BODY WINDOW(45,4)

+

+ This is a sample help for%Field One

+

+(Press%F3+to close)

)INIT

 &ZWINTTL = 'Field Level Help One'

)END

And this REXX code can be used to display and experiment with this capability:

Address ISPExec

 do forever

 'Display Panel(pnfldh)'

 if rc > 0 then leave

 end

6 June 2021 ISPF Developer Tips/Tricks Page 20

Using Point and Shoot (PNS) with ISPF Panels
PNPNS, RXPNS, and RXPNSL

There are times where an ISPF panel needs to support point and shoot logic and this is a

simple way to do it.

There are two approaches to doing this. But if the user does not have tab to Point-and-

Shoot enabled then some of the usefulness is lost. Tab to Point-and-Shoot can be enabled

using the ISPF command ISPFVAR PSTAB(ON).

One approach is using TYPE(PS) which allows no other attributes.

The other is TYPE(OUTPUT) with PAS(ON) which does allow most other attributes to be

used such as intens, color, caps, justification, and hilite for the field.

Define some attributes

type(output) intens(high) caps(off) just(left) pas(on) hilite(uscore)

type(output) intens(high) caps(off) just(asis) pas(on) hilite(uscore)

@ type(PS)

Use the appropriate attribute based on the justification. In some cases, you will want to use

left justification and in others, you need specific placement so asis justification is what you

need. These fields are enabled for overtyping but there is no effect from doing so.

If using TYPE(PS) then you are not able to define any other attributes, but the advantage is

that these fields are not enabled for overtype as the TYPE(OUTPUT) fields are.

Use them in the table header

@Name+ Gen Abs@CRdate @MDdate +V.M @Size+

In this example both left and asis justification are used. Some of the headers are not

defined for point and shoot (e.g. GEN Abs, V.M). The rest are defined for left justification

except the MDdate which is defined using asis justification.

Or use them within a panel

Enter value:_val#xyz+

Define the output variable values in the)INIT section

&name = 'Name'

&crdate = 'Created'

&size = 'Size'

&xyz = 'XYZ'

As you can see all of the variable names match the output name in the header row. The

&mddate has leading and trailing blanks so that it fills out the space in the header, so the

fields are aligned where they need to be.

6 June 2021 ISPF Developer Tips/Tricks Page 21

1. Define the Point and shoot

)PNTS

FIELD(name) VAR(ZCMD) VAL('SORT NAME')

FIELD(crdate) VAR(ZCMD) VAL('SORT CREATED')

FIELD(mddate) VAR(ZCMD) VAL('SORT CHANGED')

FIELD(size) VAR(ZCMD) VAL('SORT SIZE')

FIELD(xyz) VAR(ZCMD) VAL('SET XYZ')

FIELD(ZPS00001) VAR(ZCMD) VAL('Something')

In the)PNTS (point and shoot) section the syntax is:

FIELD(variable name)

This defines the variable of a point and shoot field in the ISPF display.

If using TYPE(PS) then the field name must be ZPSnnnnnn where nnnnnn is 000001 to the

number of TYPE(PS) fields on the panel and go from left to right and top to bottom.

VAR(variable)

This defines the variable to be set when the point and shoot field is selected. In this case

ZCMD will be updated and passed to the application.

VAL(value)

The value is the text that will be inserted into the variable defined in VAR(). Enclose in

quotes if more than one word or if spaces are included in the text.

And assuming your dialog understands the zcmd values you're good to go.

One way to do this so that the panel gets updated but the processing code doesn't process

is this technique which assumes that the point and shoot field sets ZCMD to a value of

'SET XYZ' and that causes the code to set panel variable to 'X', reset zcmd to null, and

then iterate which redisplays the panel.

Here is an example ISPF Panel to demonstrate the two types of Point and Shoot fields and

how they work.

Use this REXX Exec to test the following ISPF Panel:

/* REXX */

Address ISPExec

do forever

 'Display Panel(pnpns)'

 if rc = 8 then call done

 if rc> 8 then do

 say zerrsm

 say zerrlm

exit

 end

 if translate(zcmd) = 'EXIT' then leave

 end

exit

6 June 2021 ISPF Developer Tips/Tricks Page 22

And this is the ISPF Panel with a name of PNPNS

)ATTR DEFAULT(%+_)

 $ type(ps)

 # type(output) caps(off) just(left) color(red) hilite(uscore)

 @ type(output) caps(off) pas(on) hilite(uscore) color(yellow)

 } type(output) caps(off) pas(on) hilite(uscore) color(blue)

)body

%Command ==>_zcmd +

+

%Test: $One+ $Two+

+ $Three+ $Four+

+ @Five+ @Six+

+

%Value #result +

+

+Click here when ready to}Exit+

+

+Tab to any of the point and shoot fields and press%Enter+or move the

+mouse point to them and double click. See the results in the%Value+field.

+Note that the%Five+and%Six+fields are point and shoot fields but you can

+change the text that displays in them with a drawback that you can

+actually type into those fields with zero affect.

+

)Init

&five = 'Five'

&six = 'Six'

&exit = 'Exit'

)Proc

)PNTS

 FIELD(ZPS00001) VAR(RESULT) VAL('Value of 1')

 FIELD(ZPS00002) VAR(RESULT) VAL('We have two')

 FIELD(ZPS00003) VAR(RESULT) VAL('Now three')

 FIELD(ZPS00004) VAR(RESULT) VAL('Four')

 FIELD(Five) VAR(RESULT) VAL('Five or 5')

 FIELD(Six) VAR(RESULT) VAL('Six or 6')

 FIELD(Exit) VAR(zcmd) VAL(Exit)

)end

6 June 2021 ISPF Developer Tips/Tricks Page 23

PopUp Panels
PNPOP and RXPOP

When writing ISPF dialogs there are times when you want to prompt the user, or just

provide some feedback, but you don't want to take a full window to do it. That is where a

popup can be very helpful. Note that you do not have to provide a Command input (zcmd)

field on a popup panel.

A Popup Panel is defined on the)BODY statement using the WINDOWS(ww,hh) field where

ww is the number of columns wide, and hh is the number of rows deep.

Here is a sample panel (PNPOP):

)ATTR DEFAULT(%+_)

 @ type(output) caps(off) just(left)

)BODY WINDOW(45,8)

+

%This is a sample POPUP panel

 +to demonstrate the capabilities of it.

+

+and how to add a variable of the userid

+

 %Userid:@zuser

+

)INIT

&ZWINTTL = 'Sample Popup Panel'

)END

To keep it simple the variable &zuser, an ISPF variable, is used to demonstrate a variable.

The size of the popup panel is 45 characters wide and 8 rows deep.

To 'spiff' up the panel we have added a panel title using the &ZWINTTL variable in the

)INIT section to define a title to be used on the popup panel.

To display the popup panel, use the following code:

/* REXX */

 Address ISPEXEC

 'Addpop Row(4) Column(6)'

 'Display Panel(pnpop)'

 Save_Rc = rc

 'Rempop'

The ADDPOP command supports optional parameters. The ROW keyword defines which

row on the screen to display the popup, and the COLUMN how many characters from the

left to begin the display. In this case we have the panel being displayed starting on row 4

and column 6. If ROW and COLUMN are not provided, then the popup will be at the top left

of the display.

A popup can also have a)PROC section and can request the user to provide input to

answer questions.

So be creative with popups but not to overwhelm the user.

6 June 2021 ISPF Developer Tips/Tricks Page 24

Dynamically Turning Off PFSHOW

PNPOP and RXPOPKEY

The RXPOPKEY example demonstrates how to disable and then re-enable PFSHOW if the

user has PFSHOW ON. PFSHOW ON causes the function keys to be displayed at the

bottom of ISPF panels. This is not always helpful in small popup panels.

/* ------------------------ REXX ------------------------ *

| This code demonstrates how to dynamically turn off, |

| and then back on, the PFSHOW setting. This is useful |

| if the user may have PFSHOW ON to prevent the function |

| keys from overlaying the popup. |

* -- */

Address ISPExec

call pfshow 'off' /* make sure pfshow is off */

'addpop'

'display panel(pnpop)'

'rempop'

call pfshow 'reset' /* restore pfshow setting */

exit

/* -- *

| The pfshow routine will: |

| 1. check to see the passed option |

| 2. if Off then it will save the current pfshow setting |

| - save the current setting |

| - turn off pfshow |

| 3. if the option is Reset then it will |

| - test if pfshow was on and turn it back on |

* -- */

pfshow:

 arg pfkopt

 if pfkopt = 'RESET' then do

 if pfkeys = 'ON' then

 'select pgm(ispopf) parm(FKA,ON)'

 end

 if pfkopt = 'OFF' then do

 'vget (zpfshow)'

 pfkeys = zpfshow

 if pfkeys /= 'OFF' then

 'select pgm(ispopf) parm(FKA,OFF)'

 end

 return

6 June 2021 ISPF Developer Tips/Tricks Page 25

Progress Popup Panels
PNPROG1, PNPROG2, RXPROG1 and RXPROG2

There are times when an ISPF dialog needs to process behind the scenes and yet you

want to let the user know that something is happening. This can be accomplished using a

progress popup.

Here is a very simple example. The popup simply displays a counter, from 1 to 5, while the

driver exec increments the counter and then sleeps for 1 second (simulating some

background action).

Sample REXX code to demonstrate the Popup Panel:

/* rexx */

 Address ISPExec

 do i = 1 to 5

 'control display lock' /* Lock the Display */

 'addpop' /* Setup for a Pop Up Panel */

 pcount = i /* Update the variable for the panel */

 'display panel(pnprog1)' /* Display the ISPF Panel */

 'rempop' /* Remove the Pop Up Setup */

 address syscall 'sleep 1' /* Now sleep for 1 second to

 simulate work. */

 end

Here is the sample popup panel (named as PNPROG1):

)Attr

 @ Type(Output) intens(High)

)Body Window(24,3)

+

+Progress count:@z +

+

)Init

 &zwinttl = 'Progress Counter'

 .zvars = '(pcount)'

)Proc

)End

The output field, pcount, is defined using zvars as the field is only 3 characters on the

panel. The use of zvars is not required here as the progress field can be anything – it could

be a member name, a data set name, or some other value that will be helpful for the user.

6 June 2021 ISPF Developer Tips/Tricks Page 26

Another option is a progress meter showing the progress of something where you can

provide a percentage. This ‘meter’ adds two *’s for each increment of 10%:

/* rexx */

/* --- *

| Provide a total number of iterations for the Demo |

* --- */

 arg total

 if total = '' then total = 100

/* ----------------------------- *

| Change to ISPExec environment |

* ----------------------------- */

 Address ISPexec

/* -- *

| Define our increment so it fits in the panel |

* -- */

 incr = (total % 10) + 1

/* ------------------------------ *

| Define our increment indicator |

* ------------------------------ */

 progc = '**'

 i = 0

 perc# = 0

/* --- *

| Now loop thru and show the progress meter |

* --- */

 do until i = total

 i = i + 1

 if i//incr = 0 then do

 progc = progc'**'

 perc# = perc# + 10

 perc = perc#"%"

 prog = progc '('perc')'

/* -- *

| Lock the display since the user will not |

| be able to do anything other than watch. |

| Then sleep for 1 second to simulate work.|

* -- */

 "Control Display Lock"

 'addpop'

 'display panel(pnprog2)'

 Address syscall ‘sleep 1’

 'rempop'

 end

 end

And here is the Panel used for the Progress meter with a single output field that is updated

with the ‘meter’:

)Attr Default(%+_)

 @ type(output) intens(high) caps(off) color(blue)

)Body window(50,3) expand(\\)

+

+ Progress:@prog

+

)Init

 &zwinttl = 'Progress Meter'

)Proc

)End

6 June 2021 ISPF Developer Tips/Tricks Page 27

Action Bars and Pull-downs
PNABC and RXABC

An action bar is the panel element located at the top of an application panel that contains

action bar choices for the panel. Each action bar choice represents a group of related

choices that appear in the pull-down associated with the action bar choice. When the user

selects an action bar choice, the associated pull-down appears directly below the action bar

choice. Pull-downs contain choices that, when selected by the user, perform actions that

apply to the contents of the panel.

An action bar is analogous to the menu bar in Windows and macOS.

A panel can define pulldowns using the)ABC,)ABCINIT, and)ABCPROC panel sections.

• The)ABC section defines an action bar choice for a panel and its associated pull-

down choices.

• The)ABCINIT section runs when the user selects that action bar choice.

• The)ABCPROC section runs when the user completes interaction with the pull-down

choice and is optional.

)ATTR DEFAULT(%+_)

 $ TYPE(AB) /* Action bar */

 @ TYPE(ABSL) GE(ON) /* Action bar separator line */

)ABC DESC(Menu) MNEM(1)

 PDC DESC('Save') ACTION RUN(SAVE)

 PDC DESC('End') ACTION RUN(END)

 PDC DESC('Cancel') ACTION RUN(CANCEL)

)ABCINIT

 .ZVARS = 'MENUX'

)ABC DESC(Help) MNEM(1)

 PDC DESC('Extended Help...')

 ACTION RUN(XHELP)

)ABCINIT

 .ZVARS = HELPX

)BODY WINDOW(48,6)

+$ Menu $ Help +

@--+

% Action bars and pull-downs

%===>_ZCMD +

 Action bars are cool. Right?_ans+ (Yes, No)

)END

6 June 2021 ISPF Developer Tips/Tricks Page 28

And here is the sample display:

 File Edit Edit_Settings Menu Utilities Compilers Test Help

 - +---+ -------------------------

 E | Menu Help | Columns 00001 00072

 C | +--------------+ ----------------------------- | Scroll ===> CSR

 0 | | 1. Save | ars and pull-downs | +

 0 | | 2. End | |

 0 | | 3. Cancel | |

 0 | +--------------+ ool. Right? (Yes, No) |

 * +---+ *************************

6 June 2021 ISPF Developer Tips/Tricks Page 29

Panel Rexx
Basic Example

PNPREXX and RXPREXX

When creating ISPF panels there are times when you want to run code that is not provided

by the ISPF panel language definition. The *REXX statement is used to invoke REXX code

in a panel's)INIT,)REINIT, or)PROC section. The *REXX parameter specifies the names

of dialog variables passed to the REXX code and optionally the member name of an

external REXX program to be executed. Specifying * as the first parameter causes all the

dialog variables associated with the input and output fields on the panel to be passed to the

panel REXX code.

The REXX code cannot access any dialog variables except those specified on the *REXX

statement or defined within the ISPF Panel. The REXX code cannot issue requests for any

ISPF services. REXX coded in-line within the panel source must be terminated by with

*ENDREXX.

The example below is a popup that calculates the number of days between two dates.

Save this panel as PNPREXX and then use the provided REXX code to test it.

)Attr

 + Type(text) Just(left) skip(on)

 @ Type(output) Just(left) intens(high)

 _ Type(input) hilite(uscore)

)Body Window(50,5) Expand(\\)

+

%Enter From Date (mm dd yyyy):_z +_z +_z +

%Enter To Date (mm dd yyyy):_z +_z +_z +

+

%Days between the above dates: @z +

)Init

 .zvars = '(fromm fromd fromy tom tod toy days)'

 &zwinttl = 'Days between Dates'

)Proc

 ver (&fromm,range,1,12)

 ver (&tom,range,1,12)

 ver (&fromd,range,1,31)

 ver (&tod,range,1,31)

 ver (&fromy,num)

 ver (&toy,num)

 vput (fromm fromd fromy tom tod toy)

 &resp = .resp

REXX(resp)

 if resp = 'END' then exit

 null = ''

 if fromm = null then fromm = 0

 if fromd = null then fromd = 0

 if fromy = null then fromy = 0

 if tom = null then tom = 0

 if tod = null then tod = 0

 if toy = null then toy = 0

 fromx = fromy''fromm''fromd

 from = date('b',fromx,'s')

 tox = toy''tom''tod

 to = date('b',tox,'s')

 days = to - from

 /* this translate code to insert commas stolen from

 Doug Nadel */

 days=strip(translate('0,123,456,789,abc,def', ,

 right(days,16,','), ,

 '0123456789abcdef'),'L',',')

 bytes = strip(days)

EndRexx

)End

6 June 2021 ISPF Developer Tips/Tricks Page 30

This is the REXX code to display the above panel:

/* rexx */

 address ispexec

 'addpop row(6) column(6)'

 do forever

 'display panel(pnprexx)'

 xrc = rc

 if xrc > 0 then leave

 end

 'rempop'

Verify a Data Set Name within Panel REXX (1.2)

PNVDSN and RXVDSN

This example demonstrates how to use TSO services and how to set messages within a

Panel.

The REXX code to display the panel is:

/* rexx */

 address ispexec

 do forever

 'addpop'

 'display panel(pnvdsn)'

 drc = rc

 'rempop'

 if drc > 0 then leave

 end

Here is the ISPF Panel code:

)Attr DEFAULT(%+_)

 $ type(input) intens(low) hilite(uscore) caps(on)

)Body expand(\\) window(54,5)

+Enter/Verify Data Set Name:

%===>$verdsn +

+

 +Enter any data set name and press enter to verify.

 +F3 to Exit.

)INIT

 &zwinttl = 'Verify DSN Exists via Panel Rexx'

 &resp = .resp

REXX(resp zedsmsg zedlmsg)

 if resp = 'END' then exit

 parse value '' with zedsmsg zedlmsg

 msgvalue = msg()

 call msg 'off'

 if sysdsn(verdsn) = 'OK' then do

 zedsmsg = 'Confirmed'

 zedlmsg = verdsn 'does exist.'

 end

 else do

 zedsmsg = 'Failure'

 zedlmsg = verdsn sysdsn(verdsn)

 end

 call msg msgvalue

*ENDREXX

 if (&zedsmsg NE &Z)

 .MSG = ISRZ001

)END

6 June 2021 ISPF Developer Tips/Tricks Page 31

What this code does in the *REXX routine is to use the SYSDSN function to test the

provided data set and then set the short and long message. Note the short and long

messages are defined in the *REXX statement as they are not included within the panel

body. The statement to save the message state in msgvalue and then turn off messages if

needed to prevent TSO messages if the data set name is not valid. The message state is

then reset when the Panel REXX completes.

Then outside the REXX code there is the traditional ISPF Panel VER statement for the data

set name and then the statement that generates the ISPF message.

Dynamically Changing the colors of the Text in ISPF Edit

PNEDITHL, RXEDITHL, and RXMEDHL

There are times where your application needs to present the user with information that is

very visible. Using normal ISPF Edit highlighting isn’t adequate and you can’t highlight

using an Edit Macro.

For demonstration purposes I’m using code that I developed for the z/OS ISPF Git Interface

(aka zigi) during a merge conflict resolution process. In this process the user is placed into

ISPF Edit and must resolve all the conflicts. Git Diff provides that conflict delta information

using three records that are inserted into the data:

<<<<<<< HEAD Identifies that the records that follow are from the current branch file
and are different from what is in the other branch file that is being
merged into the current file.

======= Is a separator between the current file and the merge file delta
records and all records after it until the >>>>>>> record are in
different from the current file.

>>>>>>> x Identified the end of the delta records. The x is the name of the other
branch.

6 June 2021 ISPF Developer Tips/Tricks Page 32

This is an example, and, in this case, highlighting is on by default, so the rows are in

yellow. Issue the command hilite off to turn off highlighting (suggest doing that in an edit

macro):

6 June 2021 ISPF Developer Tips/Tricks Page 33

The Panel Rexx code used is:

REXX(zdata zshadow zwidth)

 colorr = left('R',zwidth,'R')

 colorb = left('B',zwidth,'B')

 colorw = left('W',zwidth,'W')

 colorq = left('Z',zwidth,'Z')

 blank = left(' ',zwidth,' ')

 if length(zshadow) /= length(zdata) then

 zshadow = left(' ',length(zdata),' ')

 do i = 1 to length(zshadow) by zwidth

 Select

 when substr(zdata,i+8,1) = '+' then do

 len = substr(zdata,i+8,zwidth-8)

 len = translate(len,' ','00'x)

 len = length(strip(len))

 zshadow = overlay(colorb,zshadow,i+8,len+1)

 end

 when substr(zdata,i+8,1) = '-' then do

 len = substr(zdata,i+8,zwidth-8)

 len = translate(len,' ','00'x)

 len = length(strip(len))

 zshadow = overlay(colorr,zshadow,i+8,len+1)

 end

 when substr(zdata,i+8,7) = '>>>>>>>' then do

 zshadow = overlay(colorw,zshadow,i+1,6)

 len = substr(zdata,i+8,zwidth-8)

 len = translate(len,' ','00'x)

 len = length(strip(len))

 zshadow = overlay(colorq,zshadow,i+8,len+1)

 end

 when substr(zdata,i+8,7) = '<<<<<<<' then do

 zshadow = overlay(colorw,zshadow,i+1,6)

 len = substr(zdata,i+8,zwidth-8)

 len = translate(len,' ','00'x)

 len = length(strip(len))

 zshadow = overlay(colorq,zshadow,i+8,len+1)

 end

 when substr(zdata,i+8,7) = '=======' then do

 zshadow = overlay(colorw,zshadow,i+1,6)

 len = substr(zdata,i+8,zwidth-8)

 len = translate(len,' ','00'x)

 len = length(strip(len))

 zshadow = overlay(colorq,zshadow,i+8,len+1)

 end

 otherwise do

 len = substr(zdata,i+8,zwidth-8)

 len = translate(len,' ','00'x)

 len = length(strip(len))

 zshadow = overlay(blank,zshadow,i+8,len+1)

 end

 end

 end

 *ENDREXX

The ISPF Edit Panel, ISREDDE2, has been copied and modified for our use:

1. The menu bar was removed – no need for it in this context.

2. Panel REXX code is inserted in the)INIT section to dynamically change the data

displayed by ISPF Edit.

6 June 2021 ISPF Developer Tips/Tricks Page 34

This code isn’t that complex, but it will take more than a few minutes to fully understand. Be

aware that the code only has access to the records that are to be displayed and not to all of

the records in the dataset.

1. The code starts with the *REXX key and includes access to:

a. zdata – this is the main ISPF variable used by Edit (and View) that contains

the data that is in the current display. Each row of data is appended to zdata

until all of the data is in the display area.

b. zshadow – this is the shadow variable that is used to add custom attributes.

Each character of zshadow maps directly to a character in zdata.

c. zwidth is the width of the ISPF panel display. This is required as the zdata is

constructed one record at a time based on the screen width.

2. Next, we define some variables that are the screen width with different color

attributes. This just makes coding easier and more readable later.

3. Then we create a zshadow variable that is the same width as zdata and fill it with

blanks.

4. The fun stuff happens next. The rows are processed, one at a time, based on

walking through zdata based on the screen width.

5. The code in this example will support both a git merge conflict file and a git diff file.

The code is effectively the same:

6. Check for the substring in zdata that is at offset I plus 8, for a width of 1 or whatever

we want to check for. This is a test for the data in column 1 of the actual data. The

zdata character one is an attribute character, followed by the 6 digits for the row

sequence number, then another attribute character and then in position 8 is the start

of the real records data.

7. The next set of rexx statements:

a. Get the actual user data for the current record into variable len

b. Using the variable len next all hex 00’s are translated to blanks

c. Then len is update with the length of the variable len after removing all

leading and trailing blanks

d. Last the zshadow data is overlaid with the color that we want starting in

zshadow position I plus 8 for the length of the variable len.

8. This is repeated for each set of text that we want to check for. In this example

everything we want to look for must be in position 1 of the record.

6 June 2021 ISPF Developer Tips/Tricks Page 35

Panel Scrolling Fields
PNSCRL and RXSCRL

Occasionally there are fields on a panel that are just too short for the data that is to be

displayed, or entered, and the default fields will only truncate and not scroll. Fortunately,

the option to enable field scrolling is easy.

Here is the sample Panel with a scrolling field:

)Attr Default(%+_)

 /* ISPF - Developers - Tips and Tricks */

 $ Type(input) hilite(uscore) caps(off) just(left) intens(high)

 @ type(output)

)Body window(70,10) expand(\\)

+-\-\%Sample Scrolling Field Panel+\-\-

%Command ===>_zcmd

+

+Enter data into the scrolling field and then scroll Right (F11) or

+Left (F10) to continue to enter data and to view it.

+

%==>$scrfld @z

 @lr1sc

+ (Scroll Left or Right for up to 255 characters)

+

)Init

 .cursor = scrfld

 .zvars = '(scind)'

)Proc

)Field

 Field(scrfld) ind(scind,'<>') len(255) scale(lr1sc)

)End

Let’s look at the details of enabling a scrolling field:

1. Define the)FIELD section

2. Define each scrolling field using the FIELD(field-name) keyword and value

3. The IND keyword defines the scrolling indicator variable and characters. Using <>

will use < to scroll left and > for scrolling right.

4. The LEN keyword defines the length of the scrolling field (255 in this case)

5. SCALE keyword defines a variable that will contain a scrolling ruler to help the user

know the position within the field that is being displayed

This is what it will look like:

-------------------- Sample Scrolling Field Panel -------------------

Command ===>

Enter data into the scrolling field and then scroll Right (F11) or

Left (F10) to continue to enter data and to view it.

==> >

 ----+----1----+----2----+----3----+----4----+----5----+----6----+

 (Scroll Left or Right for up to 255 characters)

6 June 2021 ISPF Developer Tips/Tricks Page 36

And this is the REXX code that can be used to experiment with the above panel:

/* REXX */

 Address ISPExec

 do forever

 'addpop'

 'display panel(pnscrl)'

 xrc = rc

 'rempop'

 if xrc > 0 then leave

 end

6 June 2021 ISPF Developer Tips/Tricks Page 37

Dynamic Areas
PNDYN and RXDYN

This panel defines a dynamic area, but it also contains static text (field prompts), an output

field (size), and an input field (somevar). All of these elements, and many more if needed,

can coexist together.

The dynamic area defined in the panel is defined with SCROLL(ON) and EXTEND(ON).

This allows the application to scroll the data within the dynamic area when the user

requests it, and ISPF will, at display time, extend the dynamic area depth so that the depth

of the)BODY section equals that of the terminal that the panel is being displayed on.

It also shows how to use a shadow variable and character-level attributes to highlight

individual characters within the string, overriding the field attribute for just one character,

with no intervening space from a field attribute. The shadow variable is optional. Shadow

variables are only needed when you want character level attributes.

)ATTR

 @ AREA(DYNAMIC) SCROLL(ON) EXTEND(ON)

 01 TYPE(DATAOUT) COLOR(RED)

 02 TYPE(DATAOUT) COLOR(BLUE)

 03 TYPE(DATAOUT) COLOR(GREEN)

 04 TYPE(DATAOUT) COLOR(WHITE)

 r TYPE(CHAR) COLOR(RED) HILITE(REVERSE)

 g TYPE(CHAR) COLOR(GREEN) HILITE(REVERSE)

 b TYPE(CHAR) COLOR(BLUE) HILITE(REVERSE)

 $ TYPE(TEXT) COLOR(YELLOW)

)BODY

%------------------ EXAMPLE FOR USING A DYNAMIC AREA -------------------%

%COMMAND ===>_ZCMD %SCROLL ===>_AMT +

%

+ This area is fixed. size: &size

+

+ This is an input field%===>_somevar +

+

+This is extendable @DYNAREA,DYNSHAD @

 $This should be at the bottom of the screen when in full screen.

)END

This REXX routine shows how to set up a variable for use as a dynamic area variable, how

to set up the shadow variable associated with that area, how to display the panel, and how

to process UP and DOWN scrolling. RIGHT/LEFT scrolling is ignored in this example.

The data to be shown is set up to imbed the hex characters '01'x, '02'x, '03'x, and '04'x to

represent colors red, blue, green, and white respectively. It will highlight each of the color

names in their respective color, and show a list with colored color names, and line

numbers.

The exec also sets up a shadow variable, which highlights the first character of each line

with a color in reverse video. This 'shadowing' effect is only available in dynamic areas and

allows a change of the attribute at the character level, with no intervening 'blank' space

caused by a field attribute.

Note that the shadow variable (variables shadata and dynshad in this example) is optional.

You could leave it out of the panel and the exec, and you would not have character level

coloring.

6 June 2021 ISPF Developer Tips/Tricks Page 38

The display is handled by setting a variable which contains the program data (dyndata) and

then setting a second variable which will display the data (DYNAREA). The second variable

is needed in this case to handle scrolling. The same manipulation with the length of the

dyndata variable is done to the associated shadow variable, dynshad.

The variable dyndata starts with the first line to be displayed. When a scroll request is

received, the program calculates the offset into DYNDATA of the first displayed line and

creates DYNAREA from there.

To display the dynamic area panel, use the following code:

/* REXX - A Dynamic area example */

Address ISPEXEC /* Calls go to ISPF */

red = '01'x /* Assign colors to */

blue = '02'x /* Attribute bytes */

green = '03'x /* found in the data */

white = '04'x

maxlines = 600 /* set max number of lines*/

dyndata = '' /* initialize data */

shadata = '' /* initialize shadow var */

Do a = 1 to maxlines by 3 /* Create some dummy data */

 dyndata=dyndata||white||left('This is'red ||'red 'white||a , 29)

 dyndata=dyndata||white||left('This is'blue ||'blue 'white||a+1, 29)

 dyndata=dyndata||white||left('This is'green||'green'white||a+2, 29)

 shadata=shadata||' r '

 shadata=shadata||' b '

 shadata=shadata||' g '

End

/* Add a bottom of data maker to the end of the data */

dyndata = dyndata||blue||centre(green||'BOTTOM'||blue,29,'*')

shadata = shadata||' '

curline = 1; /* set current line # */

/* ---*/

/* Display loop until end or error */

/* ---*/

Do Until disprc > 0

 dynarea = substr(dyndata,1+(curline-1)*30) /* set dynamic variable */

 dynshad = substr(shadata,1+(curline-1)*30) /* set shadow variable */

 size = length(dynarea) /* Set a scalar variable */

 'ISPEXEC DISPLAY PANEL(PNDYN)' /* Display the data */

 disprc = rc /* save return code */

 'ISPEXEC VGET (ZVERB,ZSCROLLA,ZSCROLLN)' /* get scroll values */

 Select /* Process scrolling */

 When(zverb = 'UP') Then /* Scroll up */

 If zscrolla = 'MAX' Then /* if scroll was max */

 curline = 1 /* scroll to top */

 Else /* else a number is known */

 curline = max(1,curline-zscrolln); /* (maximum is top) */

 When(zverb = 'DOWN') Then /* Scroll down */

 If zscrolla = 'MAX' Then /* if scroll was max */

 curline = maxlines /* scroll to bottom */

 Else /* else a number is known */

 curline = min(maxlines,curline+zscrolln); /* (max is bottom) */

 Otherwise; /* could use left & right too */

 End

End /* End of display loop */

This is what the dynamic area panel looks like when it is displayed.

6 June 2021 ISPF Developer Tips/Tricks Page 39

Scrolling notes:

UP/DOWN scrolling

If all your data is in one variable, use (ZSCROLLN*area width) to locate the start of the

displayed variable.

LEFT/RIGHT scrolling

Left/right scrolling usually involves creating a new variable to display. This is because the

dynamic area uses a contiguous string.

When the user requests a scrolling action for the dynamic area, ISPF returns several

variables which contain information about the requested scroll. This information is checked

by the application and is then used by the application to reset the dynamic area variable.

ZVERB Direction of scroll (UP, DOWN, LEFT, RIGHT)

ZSCROLLA Amount to scroll (MAX, CSR, HALF, DATA, number, etc.)
ZSCROLLN Number of lines to scroll

Additional information:

ISPF has several functions which can be used to help get additional information to assist in

the definition of the dynamic area variable or scrolling requests.

6 June 2021 ISPF Developer Tips/Tricks Page 40

PQUERY can help get information about areas contained within the panel. You specify the

area name, and ISPF can return such things as the area type, and its width and depth.

The LVLINE built-in function can be called from the)INIT,)REINIT, or)PROC sections. It

returns the line number of the last line within a dynamic, graphic, or scrollable area which

was visible to the end-user on the currently displayed panel. This is extremely useful when

the user can be in split-screen mode.

Your application can be coded to take advantage of larger-size terminal screens by using

extendable areas, and by coding variable widths (on the)BODY section) and using the

automatic expansion feature of ISPF. On the)BODY section, you code the EXPAND

keyword, and then specify the characters you will place in the text of the panel when you

wish to expand. The character in the)BODY that you place between these two characters

will be used when the expansion is done.

Dynamically Set a Function Key to a value (e.g. RFIND)

PNDYNPFK

There will be occasions when you want to use a function key with ‘RFIND’ as the command

in an application, but you find that RFIND is being intercepted by ISPF and not passed to

your application. A Keylist or special ISPF application table is too much work.

This is one solution. See the sample code in RXTABLE for a different approach.

The solution shown here temporarily sets the 'RFIND' key to another value and resets the

key afterwards. If there is no 'RFIND' key, then pf05 is used.

The 'RFIND' key is located in the INIT section and set to 'RRFIND'. The RRFIND command

is caught in the PROC section, the ZCMD variable is set to 'RFIND' and the pfk is set back

to its original value.

One caveat, if you start another panel from the one modifying the key(s), it will inherit the

key settings, unless it is using keylist or is started with another application id.

6 June 2021 ISPF Developer Tips/Tricks Page 41

ISPF Skeletons

ISPF skeleton definitions are stored in a skeleton library and accessed through the ISPF

file-tailoring services. You create or change skeletons by editing directly into the skeleton

library. ISPF interprets the skeletons during execution. No compilation or preprocessing

step is required.

There are two types of records that can appear in the skeleton file:

• Data records - A continuous stream of intermixed text, variables, and control

characters that are processed to create an output record.

• Control statements - Control the file-tailoring process.

The available control statements are:

)BLANK)CM)DEFAULT

)DO)DOT)ELSE

)ENDDO)ENDDOT)ENDREXX

)ENDSEL)IF)IM

)ITERATE)LEAVE)NOP

)REXX)SEL)SET

)SETF)TB)TBA

The file-tailoring services, listed in the order they are normally invoked, are:

FTOPEN Prepares the file-tailoring process and specifies whether the temporary

file is to be used for output

FTINCL Specifies the skeleton to be used and starts the tailoring process

FTCLOSE Ends the file-tailoring process

FTERASE Erases an output file created by file tailoring.

File-tailoring services read skeleton files and write tailored output that can be used to drive

other functions. Frequently, file tailoring is used to generate job control language

statements for batch execution but can be used to generate many different outputs. The

ability to code)REXX statements in the skeleton adds flexibility and power.

If output from file tailoring is not to be placed in a temporary file, the desired output file must

be allocated to the ddname ISPFILE before invoking this service.

6 June 2021 ISPF Developer Tips/Tricks Page 42

Simple Skeleton
RXSKLCMD and SKCMDS

Here is an example Skeleton used to generate a report on an ISPF Commands Table:

1.)TB 20
2.)SET CNT = 50
3.)DOT &TABLE
4.)SET CNT = &CNT + 3
5.)SEL &CNT > 50
6. 1 ISPF Command Table &TABLE Date: &zdate Time: &ztime
7.)SET CNT = 1
8.)ENDSEL
9. 0CMD: &ZCTVERB!&ZCTTRUNC
10. Action: &ZCTACT
11. Desc: &ZCTDESC
12.)ENDDOT

In this skeleton the statements are:

1.)TB defines a tab which is used by the ! character to space data on the output

record

2. Sets the counter to 50 to start with

3. Processed the table name in the variable &TABLE

4. Increments the counter by 3 for each table entry

5. Selects the next records to the)ENDSEL only if the counter is greater than 50

6. Inserts a record with a new page carriage control and a title

7. Resets the counter to 1

8. Ends the title record processing

9. Inserts 3 records into the output with information on the ISPF command table entry

12. Ends table processing

And here is the sample REXX code to process the skeleton:

/* --------------- REXX -------------------- *

| Demonstration of ISPF Skeleton Processing |

* --- */

Arg Table

if table = '' then table = 'ISPCMDS'

Address ISPExec

'ftopen temp'

'ftincl skcmds'

'ftclose'

'vget (ztempf)'

"View dataset('"ztempf"')"

In this Code, the parameter passed is the name of the table to process, and if blank use

ISPCMDS. A temporary data set is used for the location of the generated report as

indicated on the FTOPEN by using the TEMP option. After the File Tailoring is closed

(FTCLOSE) a VGET for the variable with the name of the temporary data set is performed

and that data set is then processed using View.

6 June 2021 ISPF Developer Tips/Tricks Page 43

Skeleton with REXX

Using the TSO Stack

RXSKLRX and SKREXX

This example demonstrates using REXX and TSO services with a Skeleton.

This is the REXX code to drive the sample:

/* --------------- REXX -------------------- *

| Demonstration of ISPF Skeleton Processing |

* --- */

Address ISPExec

'ftopen temp'

'ftincl skrexx'

'ftclose'

'vget (ztempf)'

"View dataset('"ztempf"')"

And here is the sample Skeleton which places some data into the TSO Stack and then

pulls the data from the stack while generating JCL.

)CM Demo use of TSO stack in an ISPF skeleton

)CM Make list

)REXX STACKN

 "delstack"

 queue 'Kilroy'

 queue 'was'

 queue 'here'

 stackn = queued()

)ENDREXX

)CM Make fixed front

//SKEL1 JOB (1),'BACKUP',CLASS=A,COND=(0,LT),REGION=64M

//L EXEC PGM=IEBGENER

//SYSIN DD DUMMY

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD *

)CM Make SYSUT1 from list in stack

)DO N = 1 TO &STACKN

)REXX DATA

 parse pull data

)ENDREXX

&data

)ENDDO

)CM Make fixed back

//SYSUT2 DD SYSOUT=*

Sadly, there is no easy way to pass data via a stack or a stem into the Skeleton REXX. But

you can put the data into a data set and then us TSO services to read that data with the

Skeleton REXX (see the next example).

6 June 2021 ISPF Developer Tips/Tricks Page 44

Using TSO Commands

RXSJKRXE and SJREXXE

Note that in Skeleton REXX you can use most TSO services and commands, including

ALLOC, EXECIO, and FREE. No ISPF services may be used.

Here is an example demonstrating the use of TSO commands and the TSO Queue:

)CM Demo use of TSO stack in an ISPF skeleton

)REXX STACKN

"alloc f(in) ds('sys1.proclib(bpxas)') shr reuse"

'execio * diskr in (finis stem in.'

'free f(in)'

 "delstack"

 queue 'Reviewing BPXAS Proc'

 queue left('-',80,'-')

do i = 1 to in.0

 queue in.i

 end

 queue left('-',80,'-')

 queue ' '

 queue 'Including' in.0 'records.'

 stackn = queued()

)ENDREXX

)CM Get the data from the stack

)CM The variable STACKN is passed from the Skeleton REXX above

)CM with the number of records in the stack (queue)

)DO N = 1 TO &STACKN

)REXX DATA

 parse pull data

)ENDREXX

&data

)ENDDO

6 June 2021 ISPF Developer Tips/Tricks Page 45

Passing a Variable to the Skeleton REXX (1.3)

RXSKLRXV and SKREXXV

Passing a variable from your code to be used within the REXX inside the Skeleton is

reasonably easy. The dsname is passed to the REXX exec using arg and that places it into

the variable pool.

/* --------------- REXX -- *

 | Demonstration of ISPF Skeleton Processing with a passed variable |

 * -- */

 arg dsname

 Address ISPExec

 'ftopen temp'

 'ftincl skrexxv'

 'ftclose'

 'vget (ztempf)'

 "View dataset('"ztempf"')"

Then the ISPF File Tailoring process knows to provide the variable to the Skeleton REXX

as the variable name is on the)REXX statement. Any variable name on the)REXX

statement is both passed to the Skeleton REXX and returned to the File Tailoring

environment (see STACKN).

)CM Demo use of TSO stack in an ISPF skeleton with a passed variable

)REXX STACKN dsname

 "delstack"

 x = listdsi(dsname)

 queue 'DSName is:' sysdsname

 queue 'Volser is:' sysvolume

 queue 'RECFM:' sysrecfm 'LRECL:' syslrecl 'BLKSIZE:' sysblksize

 stackn = queued()

)ENDREXX

)CM Insert the information from the LISTDSI

)DO N = 1 TO &STACKN

)REXX DATA

 parse pull data

)ENDREXX

&data

)ENDDO

6 June 2021 ISPF Developer Tips/Tricks Page 46

ISPF Tables
PNTAB and RXTAB and RXTABLE

Tables are one of the capabilities of ISPF that are used frequently and yet rarely fully

understood. There are so many nuances with the use of tables that are left to the

developer. This section will attempt to clarify ISPF Tables.

Find
Find is different, in the opinion of the authors, than Locate (see Locate below). The author

prefers to use Find to search for a string in any, or a subset, of the variables within a row.

Here is a code snippet from RXTAB for doing a FIND.

save_floc = 0 /* Save last find location */

save_find = null /* save last find string */

Tbdispl . . .

if zcmd /= null then

if abbrev("FIND",word(zcmd,1),1) = 1 then

 save_floc = ztdtop

if zcmd = 'RFIND' then zcmd = 'FIND' save_find

Select

When abbrev("FIND",word(zcmd,1),1) = 1 then do

 find = translate(word(zcmd,2))

 save_find = find

 wrap = 0

 if save_floc > 0 then do

 'tbtop test'

 'tbskip test number('save_floc')'

 end

 do forever

 'tbskip test'

 if rc > 0 then do

 'tbtop test'

 'tbskip test'

 if wrap = 1 then do

 zedsmsg = 'Not Found'

 zedlmsg = find 'string not found in any member' ,

 'name. Try again.'

 'setmsg msg(isrz001)'

 leave

 end

 else wrap = 1

 end

 if pos(find,translate(vitem)) > 0 then do

 'tbquery test position(row)'

 crp = row

 save_floc = row

 if wrap = 1 then do

 zedsmsg = 'Wrapped'

 zedlmsg = 'Find restarted at the top of the table.'

 'setmsg msg(isrz001)'

 end

 else do

 zedsmsg = 'Found'

 zedlmsg = 'Found in row:' row

 'setmsg msg(isrz001)'

 end

 leave

 end

 end

 end

6 June 2021 ISPF Developer Tips/Tricks Page 47

This routine will search for the provided string in a single variable (vitem), however multiple

row variables can be included in the ‘if pos(‘ test.

This code also detects when the end of the table is reached and will then ‘wrap’ to the top

and start the find from there again, while issuing a message that the find has ‘wrapped’.

Enabling RFIND
Repeat Find, sadly, is not enabled by default with the out of the box ISPF. There are three

ways to enable RFIND that the author has identified, each with their own requirements.

Update the ISPF Command Table

This method requires that an ISPF command table be updated with the following command:

Verb: RFIND
Truncation: 0
Action: &USRRFIND
Description: User Repeat Find

This adds a command that has no action as the variable &USRRFIND will start out blank.
The application must then set &USRRFIND to PASSTHRU to allow the RFIND command to
be processed by the application, then reset it to blank when the application no longer needs
to offer this command. A suggested approach is to enable before the use of TBDISPL and
then after the TBDISPL completes, and before any actions are processed, then reset it.

Note that &USRRFIND is just an example, use any variable name that makes sense.

Within the code the developer must test if the command is RFIND and then change it to be
processed to FIND followed by the FIND string

Create a Temporary Command Table for the Application

This method requires more coding but does not require that the sites ISPF administrator

update any of the sites ISPF command tables.

Note that using this method requires a change if you use the REXX Compiler as

sysvar(‘sysicmd’) will return a null value when compiled. However, it appears that

sysvar(‘syspcmd’) does return the correct value when compiled.

For this to work the application code, very early, must do the following:

Address ISPExec

"VGET ZAPPLID"

if zapplid <> "TABT" then do

 "TBCreate tabtcmds names(zctverb zcttrunc zctact" ,

 "zctdesc) replace share nowrite"

 zctverb = "RFIND"

 zcttrunc = 0

 zctact = "&USRRFIND"

 zctdesc = "User controlled Repeat Find (RFIND)"

 "TBAdd tabtcmds"

 "Select CMD(%"sysvar('sysicmd') options ") Newappl(tabt)" ,

 "passlib scrname(TABLE)"

 Xrc = rc

 "TBClose tabtcmds"

 Exit xrc

end

6 June 2021 ISPF Developer Tips/Tricks Page 48

What this does is:

1. Enter the ISPF environment

2. VGET the ISPF system variable ZAPPLID

3. Compare the ZAPPLID to our desired application ID of TABT

4. If they match, then we do nothing and all through to processing the real code

5. If they do not match, then

a. Create the temporary ISPF Commands Table. It must start with the

application ID (TABT) and is defined with NOWRITE since there is no need

to save it, with REPLACE in case it already exists and wasn’t removed

during a prior execution, and with SHARE to allow the table to be used

across ISPF screens.

b. Define the four command table row variables:

i. zctverb is the command name

ii. zcttrunc is the number of characters to abbreviate the command (0 is

no abbreviation)

iii. zctact is the action the command will initiate. For our purposes we

specify an ISPF variable that we will update in the application.

iv. zctdesc is a description (can be blank)

c. Add that row to the command table

d. Reinvoke the active exec with a NEWAPPL which will enable the command

table to be used.

e. Upon return from the exec the table is closed, and the exec Exits.

Alternate Method to Update the ISPF Command Table

An alternate method that does NOT require recursion is this approach:

Address ISPExec

zctverb = 'RFIND'

zctact = "&USRRFIND"

zctdesc = "User controlled Repeat Find (RFIND)"

zcttrunc = 0

'vget (zsctpref)'

ctab = zsctpref'cmds'

'tbtop' ctab

'tbscan' ctab 'arglist(zctdesc) condlist(EQ) Next'

if rc > 0 then 'tbadd' ctab

usrrfind = null

'vput (usrrfind)'

The process is:

1. Address ISPF services

2. Define the ISPF Command table variables

a. zctverb is the command name RFIND

b. zctact is the action – in this case a symbolic &USRRFIND

c. zctdesc is a description

d. zcttrunc is a truncation value – 0 means no truncation

3. Next get the ISPF variable for the site command table prefix

4. Define the command table name by adding a CMDS suffix

6 June 2021 ISPF Developer Tips/Tricks Page 49

5. Move to the top of the command table

6. Scan for the description (zctdesc)

7. If not found (return code > 0) then add our command to the table

8. Next set the variable (usrrfind) to null (null is ‘’)

9. And put the variable into the ISPF variable pool.

Next before every TBDISPL call the usrrfind must be set to PASSTHRU:

usrrfind = 'PASSTHRU'

'vput (usrrfind)'

And then after the TBDISPL reset the variable:

usrrfind = ''

'vput (usrrfind)'

6 June 2021 ISPF Developer Tips/Tricks Page 50

Locate a Row
Locate processing is less complex than a FIND as it is typically used to locate the 1st row

with a string that matches the prefix of the selected value.

In this example the Locate always starts at the 1st row in the table. Remove the TBTOP to

have the Locate process start at the currently displayed top of the table.

When abbrev("LOCATE",word(zcmd,1),1) = 1 then do

 vitem = translate(word(zcmd,2))

 'tbtop test'

 crp = 0

 'tbscan test arglist(vitem) position(crp) condlist(ge)'

 if rc = 0 then do

 zedsmsg = 'Found'

 zedlmsg = word(zcmd,2) 'was found in row' crp

 'Setmsg msg(isrz001)'

 end

 else do

 zedsmsg = 'Not Found'

 zedlmsg = word(zcmd,2) 'was not found'

 'Setmsg msg(isrz001)'

 end

end

In this example the code does the following:

1. Assuming this code is within a Select process the When tests for an abbreviation of

the word LOCATE, allowing it to be abbreviated to a single character. Since the

command would have multiple words, with the locate value being the second word,

the abbreviation test must only work with the 1st word.

2. The row variable to be tested is then set to the translated to upper case 2nd word of

the command.

3. The table is then reset to the top and the current row pointer set to 0.

4. Execute TBSCAN to scan through the table comparing the locate value to the value

in each row. A successful match will place the row number in the variable crp.

5. The scan is using the CONDLIST option of GE, which means that the scan will stop

when it finds a row that is greater than, or equal, to the locate value.

6. Based on the return code, a message is generated to the user that the value was

found, or not found. When using a CONDLIST(GE).

6 June 2021 ISPF Developer Tips/Tricks Page 51

Selecting Multiple Rows for Processing
Selecting multiple rows at one time requires a few additional lines of coding:

1. Set a variable (e.g. CRP) with the top displayed row of the table to 0 before the 1st

TBDISPL

2. Set the ZTDSELS variable to 0 before the 1st TBDISPL

3. In the TBDISPL code section

a. Test ZTDSELS and if 0 then

i. TBTOP

ii. TBSKIP to the save top display row (CRP)

iii. TBDISPL with the PANEL parameter

b. If ZTDSELS is > 0 then

i. TBDISPL without the PANEL parameter

c. Save the ZTDTOP value in a variable (e.g. CRP)

And that is it – the code will now support selecting multiple rows with one enter key.

Check out the full table processing code below to see how this all fits together.

6 June 2021 ISPF Developer Tips/Tricks Page 52

Full Example
Using ISPF Tables can be challenging because it isn’t obvious how to do some of the

things that we are used to with the IBM, and other ISPF dialogs. But don’t let that stop you

– this chapter demonstrates some of the techniques that will make your ISPF table look

polished and professional.

The first thing is to construct the ISPF Table display Panel. This panel was generated using

the ISPF Edit Model command and selecting the TBDISPL Table Display Panel:

)Attr Default(%+_)

/* % type(text) intens(high) Defaults displayed for */

/* + type(text) intens(low) information only */

/* _ type(input) intens(high) caps(on) just(left) */

 ! type(input) intens(high) caps(on) just(left) hilite(uscore)

 ^ type(output) intens(low) caps(off) just(asis)

)Body Expand(\\)

%-\-\- Sample Table Display Panel -\-\-

%Command ===>_zcmd \ \%Scroll ===>_amt +

%

+Commands: %REF+refresh the display%Only string+Filter on string

+Selection:%S+Browse%SS/SS+Selection Range%S##+Selection Count

+

%Sel Status Item

+

)Model

!z + ^z + ^z +

)Init

 .ZVARS = '(vsel vstate vitem)'

 &amt = CSR

 &vset = 0

)Reinit

)Proc

 IF (&ZCMD = &Z)

 if (&ztdsels = 0000)

 &row = .csrrow

 if (&row ^= 0)

 if (&vsel = &z)

 &vsel = S

 &vset = 1

 if (&ztdsels ^= 0000)

 &row = &z

 IF (&vsel ^= &Z)

 if (&vsel = '=')

 &vsel = &osel

 &osel = &vsel

 if (&row = 0)

 &vsel = &Z

)End

This panel does several things:

1. Define the input field attribute of ! symbol to be used for the row selection with a

hilite of uscore to show on the display with a _ to identify where to enter the

selection command.

2. Defined an output field attribute using the @ symbol with caps off and justification of

asis.

3. The scroll amount, which is always the 2nd input field on a table panel, is set to CSR

(because the author prefers cursor scrolling instead of PAGE/HALF/##).

6 June 2021 ISPF Developer Tips/Tricks Page 53

4. If the user has the cursor on a row and presses enter there is no selection, but this

simulates a selection.

5. Note that IF statements are indentation sensitive.

Here is the REXX code, with comments, that displays the above panel.

 /* ------------------------ REXX ------------------------ *

 | Sample REXX Code to drive an ISPF Table to demonstrate |

 | 1. Processing a command (Refresh) |

 | 2. Processing individual line selections |

 | 3. Processing multiple line selections |

 | 4. Processing a range selection (SS/SS) |

 | 5. Processing a range count (S###) |

 | 6. Demonstrate Only string capability |

 | 7. Uses IBM's ISRZ001 message (zedsmsg/zedlmsg) |

 | 8. Use of Find and RFIND |

 | 9. Use of Locate (TBSCAN) |

 * -- */

The above is a short description of what the code is intended to do. This gives anyone

reading the code a starting point to understand the process.

This next section does several things:

1. Establishes the REXX addressing environment to the ISPF (ISPExec) environment.

2. Checks for a specific ISPF Application ID of TABT, and if that isn’t the active

APPLID then create a temporary ISPF Commands Table and add to it the Repeat

Find command using a variable that will be updated later. Without this in the

command table the Repeat Find command will never be passed to our code.

3. Next reinvokes the REXX code with the ISPF NEWAPPL keyword to place the code

under the desired APPLID so that the command table will be in use.

4. Also set the screen name to Table for this screen.

5. Upon return then close the table and exit.

 /* ------------------------------------ *

 | Define Addressing to ISPFExec (ISPF) |

 * ------------------------------------ */

 Address ISPExec

 /* --------> Enable Repeat Find <------------ *

 | Check for APPLID (TABT) and if not then |

 | - create an ISPF Commands Table |

 | - add RFIND to it with a variable |

 | - reinvoke the current exec with NEWAPPL |

 | - on return close the commands table |

 * -- */

 "VGET ZAPPLID"

 if zapplid <> "TABT" then do

 "TBCreate tabtcmds names(zctverb zcttrunc zctact" ,

 "zctdesc) replace share nowrite"

 zctverb = "RFIND"

 zcttrunc = 0

 zctact = "&USRRFIND"

 zctdesc = "User controlled Repeat Find (RFIND)"

 "TBAdd tabtcmds"

 "Select CMD(%"sysvar('sysicmd') options ") Newappl(tabt)" ,

 "passlib scrname(TABLE)"

 x_rc = rc

 "TBClose tabtcmds"

 Exit x_rc

 End

6 June 2021 ISPF Developer Tips/Tricks Page 54

Next the code’s defaults are defined. In this case only the null variable is defined.

 /* --------------- *

 | Define defaults |

 * --------------- */

 null = '' /* Null variable for compare */

The Refresh label is used to restart processing at this location when the user invokes the

Refresh command on the table.

 /* ---------------------------- *

 | Label for Refresh Processing |

 * ---------------------------- */

Refresh:

 /* --- *

 | Define our ISPF Table with two variables and NOWRITE as |

 | it will not be saved. |

 * --- */

At this point the table is created using TBCreate. For our purposes the table name is a

literal with the name of test. This could easily be a variable so that the table name can be

changed at will for various reasons.

The next set of code generates test data to fill the table with. This section can be replaced

by your own code to populate the table or use an existing table.

 "TBCreate test names(vitem vstate) nowrite"

 /* -------------------------------------- *

 | Now fill the ISPF table with test data |

 * -------------------------------------- */

 str = 'AbcDefGhiJklMnoPqrStuVwxYz0123456789'

 strc = 1

 vstate = null

 do i = 1 to 100

 vitem = substr(str,strc,3) 'Test data number:' right(i+1000,3)

 strc = strc +3

 if strc > 34 then strc = 1

 "TBAdd test"

 End

With the table populated it is time to define our defaults for processing. These variables are

used to control some of the table processing actions.

 /* -- *

 | Table defined and populated - get to the top now |

 | and define our working variables |

 * -- */

 ztdsels = 0 /* Define # rows selected to 0 */

 crp = 1 /* Define the starting row to 1 */

 save_floc = 0 /* Save last find location */

 save_find = null /* save last find string */

6 June 2021 ISPF Developer Tips/Tricks Page 55

A do forever loop is used to process the table until the user uses F3 (END) to terminate

processing:

 /* --- *

 | Process the table forever - until we say we're done |

 * --- */

 do forever

Before the Table Display (TBDISPL) the usrrfind variable is changed to PASSTHRU

and VPUT is used to update the variable in the ISPF pool. This allows the Repeat Find

(RFIND) command to be passed to this code for processing. See Enabling RFIND, above

for more information.

 /* -- *

 | Define USRRFIND for Passthru to enable RFIND |

 * -- */

 usrrfind = 'PASSTHRU'

 'vput (usrrfind)'

Next is the key to the table processing with the test of ztdsels (# of selected rows) so that

we can process multiple rows at one time.

 /* -- *

 | Test ZTDSELS - if greater than zero than display the |

 | table without the Panel name |

 | - if zero than display with the Panel name |

 | after 1st reseting the display to the last location|

 * -- */

 if ztdsels > 0

 then 'tbdispl test'

 else do

 'tbtop test'

 'tbskip test number('crp')'

 'tbdispl test panel(pntab)'

 End

The return code must be saved so that it can be tested but it shouldn’t remain in the rc

variable since the return code will be changed by the code that resets the USRRFIND

variable using VPUT, which is done next to allow RFIND to be used by native ISPF routines

(e.g. Browse, Edit, …).

 trc = rc /* Save the TBDISPL return code */

 /* ----------------------- *

 | Reset USRRFIND to blank |

 * ----------------------- */

 usrrfind = ''

 'vput (usrrfind)'

6 June 2021 ISPF Developer Tips/Tricks Page 56

At this point, after the USRRFIND has been reset, is the time to determine if the user used

F3 to terminate processing and if so, then leave the do forever loop.

 /* -- *

 | If the return code from the table display (TBDISPL) is |

 | greater than 4 then we are done so leave the forever loop. |

 * -- */

 if trc > 4 then leave

This is where the real processing occurs. There are both commands (zcmd) and row

selections (vsel) and both a processed separately. For zcmd there is a need to check to

see if the command is RFIND, something you’ll never see if you didn’t update the

USRRFIND variable, and if it is RFIND then the zcmd must be changed to FIND followed

by the last character string used for FIND. See Find for more information on supporting

FIND, and Enabling RFIND for more information on RFIND.

 /* --- *

 | Test the zcmd for any commands that we are to |

 | process. |

 * --- */

 if zcmd /= null then

 if zcmd = 'RFIND' then do

 zcmd = 'FIND' save_find

 'tbtop test'

 'tbskip test number('save_floc')'

 end

 Select

 /* ------------------------------- *

 | Test if there is a command |

 * ------------------------------- */

 if zcmd /= null then

 /* --- *

 | Find and Repeat Find processed. |

 | |

 | Checks for the provided string in the specified |

 | row variables. |

 * --- */

 When abbrev("FIND",word(zcmd,1),1) = 1 then do

 find = translate(word(zcmd,2))

 save_find = find

 wrap = 0

 if save_floc > 0 then do

 'tbtop test'

 'tbskip test number('save_floc')'

 end

 do forever

 'tbskip test'

 if rc > 0 then do

 'tbtop test'

 'tbskip test'

 if wrap = 1 then do

 zedsmsg = 'Not Found'

 zedlmsg = find 'string not found in any member' ,

 'name. Try again.'

 'setmsg msg(isrz001)'

 leave

 end

 else wrap = 1

 end

 if pos(find,translate(vitem)) > 0 then do

 'tbquery test position(row)'

 crp = row

6 June 2021 ISPF Developer Tips/Tricks Page 57

 save_floc = row

 if wrap = 1 then do

 zedsmsg = 'Wrapped'

 zedlmsg = 'Find restarted at the top of the table.'

 'setmsg msg(isrz001)'

 end

 else do

 zedsmsg = 'Found'

 zedlmsg = 'Found in row:' row

 'setmsg msg(isrz001)'

 end

 leave

 end

 end

 end

This section of code demonstrates doing a Locate. See Locate a Row for more information

on Locate processing.

 /* -- *

 | Demonstrate Locate Processing on the row |

 * -- */

 When abbrev("LOCATE",word(zcmd,1),1) = 1 then do

 vitem = translate(word(zcmd,2))

 'tbtop test'

 crp = 0

 'tbscan test arglist(vitem) position(crp) condlist(ge)'

 if rc = 0 then do

 zedsmsg = 'Found'

 zedlmsg = word(zcmd,2) 'was found in row' crp

 'Setmsg msg(isrz001)'

 end

 else do

 zedsmsg = 'Not Found'

 zedlmsg = word(zcmd,2) 'was not found'

 'Setmsg msg(isrz001)'

 end

 end

6 June 2021 ISPF Developer Tips/Tricks Page 58

The Only command (abbreviated to O) is used to limit the rows displayed to only those with

the specified character string. This can be done a number of ways, but this is a simple

technique, which requires using the Reset command to restore all the other rows to the

table display.

 /* --- *

 | Only will check for the provided string (case insensitive) |

 | in any location within the row variables. |

 * --- */

 When abbrev("ONLY",word(zcmd,1),1) = 1 then do

 str = subword(zcmd,2)

 if strip(str) = null then do

 zedsmsg = 'Only Invalid'

 zedlmsg = 'Only requires a string parameter.'

 'Setmsg msg(isrz001)'

 end

 else do

 'tbtop test'

 do forever

 'tbskip test'

 if rc > 0 then do

 'tbtop test'

 leave

 end

 if pos(str,translate(vitem vstate)) = 0 then

 'tbdelete test'

 end

 end

 end

Refresh closes the active ISPF Table and then restarts the code at the label Refresh which

recreates the table from scratch.

 /* --- *

 | Refresh will close the table and then signal (goto) the |

 | Refresh label to start over. |

 * --- */

 When abbrev("REFRESH",zcmd,1) = 1 then do

 'tbend test'

 signal Refresh

 end

Because no one is perfect there needs to be a way to let the user know when they enter a

command that the code can’t handle. This is one way to do that.

 /* -- *

 | Process unknown commands here - basically let the user |

 | know we didn't know what the command is that they |

 | entered. |

 * -- */

 Otherwise do

 zedsmsg = 'Unknown'

 zedlmsg = zcmd 'is an unknown command - try again.'

 'Setmsg Msg(isrz001)'

 end

 end

6 June 2021 ISPF Developer Tips/Tricks Page 59

After processing any command, it is time to check for any row selections. To keep the table

from scrolling up, or down, this code saves the current top row (ztdtop) so that the table

display can be repositioned when it is next displayed using TCDispl.

 /* -- *

 | Process the line selections if the selection variable (vsel) |

 | is not null. |

 * -- */

 if strip(vsel) /= null then do

 /* --- *

 | This code is to support the selection by the user |

 | pressing enter on the row and not entering any |

 | selection value (point and shoot). |

 | |

 | 1. save the current top row |

 | 2. if the row selected via enter (vset = 1) |

 | then tbtop and then skip to that row |

 * --- */

 crp = ztdtop

 if vset = 1 then do

 vset = 0

 "TBTop test"

 "TBSkip test NUMBER("row")"

 end

This is where the individual row selections are processed. This example is very simple, but

it demonstrates what you can do. There are also examples of handling multiple row

selections and range selections. See Selecting Multiple Rows for Processing above for

more information.

 Select

 /* ------------------------- *

 | Process an individual row |

 * ------------------------- */

 When vsel = 'S' then do

 zedsmsg = null

 zedlmsg = 'Row data:' vitem

 'setmsg msg(isrz001)'

 say 'Row data:' vitem

 vstate = 'Selected'

 'tbput test'

 End

This next section of code demonstrates how to process a range of rows. See Selecting

Multiple Rows for Processing for more information on this process.

 /* --

*

 | Process a range selection where the 1st row is selected using SS |

 | and then the last row with an SS. |

 * --

*/

 When vsel = 'SS' then do

 /* ------------------------------------ *

 | When only 1 SS is specified |

 | if block indicator on then process it |

 | if not set the block indicator and |

6 June 2021 ISPF Developer Tips/Tricks Page 60

 | get the 1st row location |

 * ------------------------------------- */

 if ztdsels = 1 then do

 if block = 1 then call do_ss

 else do

 block = 1

 vstate = 'SS'

 'tbput test'

 'tbquery test position(row1)'

 row2 = 0

 end

 end

 /* -- *

 | When Both from SS and to SS are provided |

 | - get the 1st row |

 | - set row2 to 0|

 | - set block indicator to on |

 * -- */

 else do

 'tbquery test position(row1)'

 row2 = 0

 block = 1

 end

 end

 /* -------------------------------------- *

 | Process a selection with a count S###) |

 * -------------------------------------- */

 When left(vsel,1) = 'S' then do

 /* -- *

 | Extract the count from the selection command |

 * -- */

 vcount = substr(vsel,2)

 /* -------------------- *

 | Save current top row |

 * -------------------- */

 save_top = ztdtop

 /* --------------------------- *

 | Validate that it is numeric |

 * --------------------------- */

 if datatype(vcount) /= 'NUM' then do

 zedsmsg = null

 zedlmsg = 'Invalid selection' vsel '- expecting S###'

 'setmsg msg(isrz001)'

 end

 else do

 /* -------------------------- *

 | Get the current row number |

 | and the # of rows in table |

 * -------------------------- */

 'tbquery test position(row1) rownum(rows)'

 /* -------------------------------- *

 | Identify the last row to process |

 * -------------------------------- */

 row2 = row1 + (vcount - 1)

 /* -------------------------------- *

 | Test for going past end of table |

 * -------------------------------- */

 if row2 > rows then do

 zedsmsg = null

 zedlmsg = vsel 'is invalid as it goes beyond the end of the

table.'

 'setmsg msg(isrz001)'

 end

 else do

 /* --- *

 | Process the 1st row and update the state in the row |

6 June 2021 ISPF Developer Tips/Tricks Page 61

 * --- */

 say 'Row data:' vitem

 vstate = 'Selected'

 'tbput test'

 /* ------------------------------- *

 | Skip 1 row and process the rest |

 * ------------------------------- */

 'tbskip test'

 do (row2-row1)

 'tbget test'

 say 'Row data:' vitem

 vstate = 'Selected'

 'tbput test'

 'tbskip test'

 end

 'tbtop test'

 'tbskip test number('save_top')'

 end

 end

 end

As for unknown commands, it is only polite to inform the user if they enter any row selection

options that the code is unable to process.

 /* ------------------------------ *

 | Process unknown row selections |

 * ------------------------------ */

 Otherwise do

 zedsmsg = 'Unknown'

 zedlmsg = vsel 'is an unknown row selection - try again.'

 'setmsg msg(isrz001)'

 end

 end

 vsel = null

 end

 end

At this point the user has issued the F3 (END) command and processing is completed. The

table must be closed, and the code can exit processing.

 /* ------------------------------- *

 | All done so close out the table |

 | and Exit |

 * ------------------------------- */

 "TBEnd test"

 Exit 0

Here is the subroutine used for range processing.:

 /* ------------------------------- *

 | Process the SS/SS Range command |

 * ------------------------------- */

Do_SS:

 /* -------------------------------- *

 | Get the row number of the 2nd SS |

 * -------------------------------- */

 'tbquery test position(row2)'

 /* -- *

 | Test to see which SS entry is the 1st row to process and |

 | arrange row1 to the lowest row number and row2 to the |

 | highest row number. This allows the range to be selected |

 | in either direction from any panel. |

6 June 2021 ISPF Developer Tips/Tricks Page 62

 * -- */

 if row2 < row1 then do

 rowx = row2

 row2 = row1

 row1 = rowx

 end

 /* --- *

 | Position to the top row and then skip down to the |

 | 1st row to process. |

 * --- */

 'tbtop test'

 'tbskip test number('row1')'

 /* ------------------------- *

 | Process the selected rows |

 * ------------------------- */

 do row2 - row1 +1

 /* ---------------- *

 | Get the row data |

 * ---------------- */

 'tbget test'

 say 'Row data:' vitem

 /* -------------------------------- *

 | Update the row state variable |

 | Then update the row in the table |

 | Then skip to the next row. |

 * -------------------------------- */

 vstate = 'Selected'

 'tbput test'

 'tbskip test'

 end

 /* --- *

 | When done then reset our working variables and return |

 * --- */

 row1 = 0

 row2 = 0

 block = 0

 ztdsels = 0

 'tbtop test'

 'tbskip test number('ztdtop')'

 Return

6 June 2021 ISPF Developer Tips/Tricks Page 63

Adding Rows to a Table When Needed

PNDYNTP, PNDYNTBL and RXDYNTBL

In the ISPF Developers Guide and Reference is a section with the title of: “Adding table

rows dynamically during table display scrolling” that provides information on how to add

rows to a table when needed. This is a fantastic time saver when the table may have many

thousands of rows. It may just be me (Lionel), or perhaps it’s the IBM documentation, but

this did not provide enough information to implement a dialog using this capability. But with

some trial and terror a working example was finally arrived at and the code has been used

in a production application with great success.

Note that the ISPF panel used for the TBDISPL is no different from any other table panel.

The use of the TBTOP, TBSKIP, and TBDISPL is also no different.

What’s different is that when the application starts it only loads a small number of records

into the table before displaying the table. Then as the user scrolls, the TBDISPL service,

will return to the application with a request for more table rows to be added.

For our example we create a REXX stem with 10,000 stem records. This stem information

is basic as it is for demonstration purposes.

/* 1st build a stem with a bunch of records */

str = 'one two three four five six seven eight nine ten'

do i = 1 to 10000

 off = i//10

 if off = 0 then off = 10

 stem.i = word(str,off) date(w) time('l')

end

stem.0 = 10000

Then the Table is created using TBCREATE.

/* now create the table and prime it with 100 records */

tbl = 'DT'time('s') /* random table name */

Address ISPExec

'tbcreate' tbl 'names(data date time) nowrite'

ztdamtl = 100 /* set initial # of rows to add */

last = 1 /* initialize the last record added */

ztdret = 'DOWN' /* instruct tbdispl to return to us on DOWN */

c = 0 /* set row added counter */

x = add_rows() /* call routine to add rows */

The key things here are:

1. ztdamtl is a table display variable that is set by TBDISPL to instruct the application

how many rows need to be added. Since we are just starting, we are setting it to

100 before calling the add_rows subroutine.

2. last is a variable used by the application to keep track of the last stem that was

added.

3. The key variable is ztdret which instructs TBDISPL to return to the application when,

in this case the DOWN command, occurs if it will require more records to satisfy the

scrolling request.

4. c is a counter to keep track of how many rows have been added.

6 June 2021 ISPF Developer Tips/Tricks Page 64

The add_rows subroutine should be very familiar to anyone who has worked with ISPF

tables as it just loops through a stem adding the stem values to the table using tbadd.

Add_Rows:

 if bottom = 1 then return 8 /* If already at the bottom then return

 quickly */

 msg1 = 'Adding more records.'

 msg2 = 'Starting with record' last

 call pop /* Inform the user of the adds in

 progress */

 if ztdamtl < 100 /* add at least 100 each time */

 then ztdamtl = 100

 'tbbottom' tbl /* Get to the bottom of the table to

 start */

 do i = last to last+ztdamtl

 if i > stem.0 then do

 last = i

 return 8

 end

 parse value stem.i with data date time

 'tbadd' tbl

 c = c + 1

 end

 last = i

 return 0

In this example a popup is used to inform the user that additional records are being added

to the table. This may, or may not, be something to have is a ‘real’ application but is used

here so that when using the example, it is obvious additional rows are being added.

The ztdamtl variable is used to determine how many additional rows to add. In our case we

test to determine if TBDISPL is requesting less than 100 rows and if so then the variable is

set to 100. Adding 100 rows is transparent compared to adding 10, and by adding more it

reduces the additional calls to add additional rows to the table. If the user requested

‘DOWN 999’, that is more than 100 records and the routine will honor that request (same

for ‘DOWN MAX’.

It is important, especially if the table does not have keys, that the table be positioned at the

bottom before adding additional rows. The TBBOTTOM does this for us.

The next section of code adds the requested rows to the table, starting with the last

variable which contains the next record to be added from the last add process. When the

add loop ends the last variable is reset to the value of ‘i’ from the loop, which is the next

records to be added.

The return code from the add routine is either 0, for success, or 8 to indicate the end of the

stem was reached and there are no more records that can be added.

6 June 2021 ISPF Developer Tips/Tricks Page 65

Returning to the sample code from our subroutine, the next section of code displays the

table:

dtop = 1 /* set top of table variable */

do forever

 'tbtop' tbl /* Get to the top of the table */

 'tbskip' tbl 'number('dtop')' /* Scroll down to where the user

 scrolled last */

 'tbdispl' tbl 'panel(pndyntbl)' /* display the table */

 if rc > 0 then leave /* Leave if F3/End requested */

 dtop = ztdtop /* save the top displayed row */

 'vget (zscrolla)' /* get scroll amount */

 /* query the table for information */

 'tbquery' tbl 'rownum(totrows) position(pos)'

In this code the key items to note are:

1. The vget of the zscrolla value. This variable contains the number of rows to scroll

2. The TBQUERY is used to get the total rows currently in the table and the cursor

position. Both will be used shortly.

This next section of code processes the TBDISPL request to add additional rows, but it is

primarily to make sure that the table will continue to display with the correct row as the top

row in the table display.

If more rows are needed because the user has scrolled to the point that TBDISPL needs

them to display, the ztdadd variable will be set with a value of YES.

This section checks to determine if there are really rows to add. In this routine the key is

that if no additional rows are to be added because all rows have already been added, then

the ztdadd variable is set to NO.

Then the zscrolla value is tested, and if it is CSR and the current cursor position is 0 then

the top row to be displayed is adjusted for the scrolling request.

if ztdadd = 'YES' then /* Add more rows ? */

if totrows = stem.0 /* if Yes have all records been added */

then ztdadd = 'NO' /* If all added change ztdadd to NO */

if zscrolla = 'CSR' then /* Test scroll amount for CSR */

if pos = 0 then do /* If CSR then is cursor at 0 */

 dtop = dtop + ztdvrows /* If at 0 then down down 1 screen of data */

 if dtop >= totrows then /* If top >= total rows */

 dtop = totrows - ztdvrows +1 /* then reset the top row */

end

If the add request is real, then this next section calls the add_rows subroutine:

if ztdadd = 'YES' then do forever /* Request to add more rows */

 c = 0 /* Set added counter */

 if zscrolla = 'MAX' then ztdamtl = stem.0 /* test for max */

 x = add_rows() /* call add_rows subroutine */

The counter (c) is set to zero and we next check the zscrolla value. If it is MAX then the

ztdamtl is set to the stem.0 value, which is the total number of stem records.

6 June 2021 ISPF Developer Tips/Tricks Page 66

The add_rows subroutine is then called with a return code being placed into the variable x.

if c > 0 then do /* records added */

 if ZTDSCRP > 0 then /* update top row to display */

 dtop = ZTDSCRP

 else do

 /* ------------------------------------ *

 | Test to setup the top row to display |

 * ------------------------------------ */

 'tbquery' tbl 'rownum(totrows) position(pos)'

 if datatype(zscrolla) /= 'NUM'

 then if zscrolla /= 'MAX'

 then zscrolla = 0

 if zscrolla = 'MAX'

 then dtop = totrows - ztdvrows +1 /* adjust to see the bottom row */

 else dtop = dtop + zscrolla

 end

 leave

end

This code, immediately after the add_rows subroutine:

1. Checks that records were actually added (when c is greater than zero).

2. Then the TBDISPL determined new current row pointer is tested and if it is greater

than zero it is used, otherwise there is more work to do. There will be times that

TBDISPL is unable to determine the ZTDSCRP value and returns a zero

3. If ZTDSCRP is zero, then the following routine is used to set the top display row

a. If zscrolla is not numeric and if it is not MAX, then it is set to zero

b. If zscrolla is MAX, then the display top row (dtop variable) is set to the total

number of rows less the number of visible display rows (ztdvrows) plus 1.

The plus 1 is required from experimentation or the very last row will never be

displayed.

This feature of TBDISPL is very powerful and is a great improvement for very large tables.

To see the difference, modify the RXDYNTBL to add all 10,000 records initially and then

compare it to how quickly the table display occurs with the initial add of 100 records. On a

small, knee capped LPAR, the 100 records time was sub second with 12 service units while

10,000 records was .12 seconds and 16,794 service units. Imagine if the number of records

was in excess of 300K.

6 June 2021 ISPF Developer Tips/Tricks Page 67

More about table display

Preserve line commands for multiple selections
Normally you would use the combination of the ZTDSELS variable and additional TBDISPL

commands to retrieve successive rows of a table. But the TBDISPL unfortunately ends if

another display is done. This could happen if the selection action results in i.e. ISPF EDIT

of a dataset.

The solution is to save the line selection commands and the row id for later processing. The

following sample shows the entire process, including scrolling.

/* main table handler */

Do forever

 if datatype(pnltop)<>'NUM' | pnltop<1 then pnltop=1/* set top pos */

 "tbtop" tblname /* re- */

 "tbskip" tblname "number("pnltop") NOREAD" /* position */

 parse value '' with zcmd zerrlm /* init some vars */

 "tbdispl" tblname "panel("pnlname") rowid(pnlrowid)" /* selection */

 if rc>8 then Call Epilog 'Table display' pnlname 'rc' rc zerrlm

 if rc=8 | Abbrev('CANCEL',zcmd,3)

 then Call Epilog /* END / RETURN / CANCEL*/

 pnltop=ztdtop /* save 1st displayed */

 /* save row selections */

 pnlsel.0=ztdsels /* init list */

 Do n=1 to ztdsels

 if n>1 then "tbdispl" tblname "rowid(pnlrowid)" /* next selection */

 pnlsel.n=zsel';'pnlrowid /* save sel and rowid */

 End

 if zcmd<>'' then Call PCmdHandler /* process primary cmd */

 if pnlsel.0>0 then Call LCmdHandler

 end

… more code …

/* handle primary commands */

PCmdHandler:

 say 'pcmd:' zcmd

 return 0

/* process row selections */

LCmdHandler:

 Do pnlseln=1 to pnlsel.0

 parse var pnlsel.pnlseln lc';'rowid

 "tbskip" tblname "row("rowid")" /* retrieve row */

 say 'Process row' rowid 'zsel' lc', seq='seq' ,dsn='dsn

 End

 return 0

Table filter using existing variable name
The following section show one method for filtering a table non-destructively. The noshow

indicator becomes part of one of the existing variables, so the process does not destroy

any rows. You must of course reset the indicator before saving the table, and probably also

when opening the table, if it permanent. The filter makes use of the ROWS parameter of

the)MODEL panel command, like shown below. The ‘PROWS’ variable is set by the

program depending on if a filter is set or not.

)MODEL clear(zsel) rows(&prows)

6 June 2021 ISPF Developer Tips/Tricks Page 68

REXX program snippet. The filter commands are processed as follows:

 Include include in addition to already included

 Exclude exclude in addition to already excluded

 Only show all with text, hide all without

 Hide hide all with text, show all without

 All | Reset show all

The table contains the following variables: DSN, TYPE, VOL and CAT. The DSN variable is

used for the filter indicator. Some checks have been removed to keep the snippet small.

/* handle primary commands */

PCmdHandler:

 parse var zcmd cvrb cdata

 if cdata<>'' &,

 (Abbrev('INCLUDE',cvrb,1) | Abbrev('EXCLUDE',cvrb,1),

 | Abbrev('ONLY' ,cvrb,1) | Abbrev('HIDE' ,cvrb,1)) then call Filter

 if Abbrev('RESET' ,cvrb,3) | Abbrev('ALL' ,cvrb,1) then call Reset

 return 0

/* Include/exclude rows with text - use var 'dsn' */

Filter:

 cnd=left(cvrb,1)

 filtn=0

 "tbtop" tblname

 "tbquery" tblname "rownum(rown)" /* get number of rows */

 do rown

 "tbskip" tblname /* get next row */

 odsn=dsn /* save dsname for test*/

 if pos(cnd,'HO')>0 then dsn=strip(dsn,'l','-') /* reset */

 if cnd='I' then,

 if pos(cdata,dsn type vol cat)>0 then dsn=strip(dsn,'l','-')

 if cnd='O' then,

 if pos(cdata,dsn type vol cat)=0 then dsn='-'strip(dsn,'l','-')

 if pos(cnd,'EH')>0 then,

 if pos(cdata,dsn type vol cat)>0 then dsn='-'strip(dsn,'l','-')

 if dsn<>odsn then do /* indicator changed? */

 "tbput" tblname /* update row */

 filtn=filtn+1 /* for message */

 end

 End

 if filtn=0 then return 0 /* anything changed ? */

 parse value '' with seq type vol cat text lcmd /* init vars */

 dsn='-*' /* set search */

 "tbsarg" tblname "namecond(DSN NE)" /* set indicator */

 parse value 0 'SCAN' with pnltop prows

 Return setmsg(filtn 'records changed')

/* Reset - show all rows */

Reset:

 "tbtop" tblname

 do forever

 parse value '-*' with dsn seq type vol cat text lcmd

 "tbscan" tblname "arglist(dsn) condlist(EQ)"

 if rc<>0 then leave

 if left(dsn,1)<>'-' then iterate

 dsn=strip(dsn,'l','-') /* drop indicator */

 "tbput" tblname

 end

 parse value 0 'ALL' with pnltop prows /* show all rows */

 Return 0

Setmsg:

 parse arg zedlmsg

 address ispexec "setmsg msg(isrz000)"

 return 0

6 June 2021 ISPF Developer Tips/Tricks Page 69

XISPTBL : Subroutine for ISPF table handling
Whenever you use a table, some handling is most often the same, like scrolling and

searching. XISPTBL is an attempt to standardize table handling. It

Short description
Callable subroutine for standard ISPF table handling. The subroutine has built-in support

for filtering, sorting and edit - table-row delete, edit, insert and repeat.

You can also specify primary- and line commands for which an external program is to be

called.

It is recommended that the table contains variable ZSEL, otherwise a temporary table

Wnnnnnnn is created as a copy. Any changes to the temporary table are reflected into the

original table.

For further documentation and a short sample, see the XISPTBL program itself.

6 June 2021 ISPF Developer Tips/Tricks Page 70

ISPF Messages
RXMSG

Every ISPF dialog needs to generate messages to inform the user of different situations.

There are several ways to deal with messages, but the one trick makes it easy.

IBM provides a very useful, and generic, message in their ISRZ00 member – ISRZ002.

This message is built using variables that anyone can use – so why create your own

message when you can use this one.

To use this message, you need to:

1. Set variable ZERRSM to a short message

2. Set variable ZERRLM to a long message

3. Set variable ZERRALRM to YES or NO, controls an audible alarm with the message

4. Set variable ZERRHM to the name of your tutorial panel

5. Use SETMSG MSG(ISRZ002) to generate the message

You can set the required ZERRALRM and ZERRHM variables early in your code and then

change ZERRSM and ZERRLM multiple times depending on the circumstances. For this

you do not have to define alarm or help value. Keep in mind that the long message is

limited to 512 bytes.

Notes:

1. If ZERRSM is null, then the ZERRLM message will be immediately displayed.

2. If ZERRLM is null, then pressing F1 will display the tutorial panel instead of the

displaying the long message

3. You can make a small popup for the long message by adding text in 75-character

increments thus:

/* rexx */

Address ISPExec

zerrsm = 'Error'

zerralrm = "NO"

zerrlm = left('test message',75,'*') ,

left('test message 2',75,'*')

zerrhm = "ispftutr"

"Setmsg msg(isrz002)"

Which generates this long message display:

+--

---+

| test

message*** |

| test message

2*** |

+--

---+

Another option is to use the ISRZ001 message which uses variables ZEDSMSG (short

message) and ZEDLMSG (Long Message).

6 June 2021 ISPF Developer Tips/Tricks Page 71

Note – if the short message value is null then the long message will be displayed without

the user having to press F1. This is true for any ISPF message and not just the ISRZ001 or

ISRZ002 messages.

6 June 2021 ISPF Developer Tips/Tricks Page 72

ISPF Edit Macros
ISPF provides the ability to create your own ISPF Edit commands, called Macros, using

different programming languages. As we have done throughout this document, we will use

REXX, but that can be translated into Assembler, C, or your choice of language.

Tip: Exit an Edit Macro with a return code of 1 to place the cursor in the command entry

field.

6 June 2021 ISPF Developer Tips/Tricks Page 73

Centering Text using an Edit Macro
RXCENTER

This is an example of an ISPF Edit Macro that processes selected records by centering the

data on them based upon either the data width or the width provided when the macro is

invoked.

/* rexx */

 Address ISREdit

 'Macro (dw) NOPROCESS'

 "PROCESS RANGE C"

 "(start) = linenum .zfrange"

 "(stop) = linenum .zlrange"

 if dw = '' then

 '(dw) = data_width'

 do i = start to stop

 '(data) = line' i

 data = center(strip(data),dw)

 'line' i '= (data)'

 end

Copy this into your own REXX library as CENTER for use.

In this example:

1. The ISPF Edit addressing environment is defined.

2. The Macro statement identifies this code as an ISPF Edit Macro, with an optional

parameter (dw) and instructing ISPF Edit to NOT Process (NOPROCESS) any line

commands that may be found.

a. Note: NOPROCESS MUST be in UPPER CASE.

3. ISPF Edit is instructed to identify the RANGE of records selected, either with a

single C for a single record, or CC on one record and CC on another to indicate a

range.

a. Note that the range character(s) – C in this case must be UPPER CASE, the

process range may be any case.

b. With PROCESS RANGE you can specify 1 or 2 characters to identify the

range.

4. The range is then returned to the variables start and stop using the linenum service

where zfrange (first) and zlrange (last) are the row numbers.

a. If no records were tagged with a C or CC/CC, then all records will be

processed

b. C## can also be used to select a range

5. If the data width was passed as a parameter then use it, otherwise get the data

width that ISPF Edit knows about.

6. Then loop from the start to the stop rows centering the data and updating the record

using the LINE statement.

6 June 2021 ISPF Developer Tips/Tricks Page 74

Invoking ISPF Edit with a Macro
RXEMAC and RXEMACE

It is very easy to call ISPF Edit from within code and have it open with a macro:

/* rexx */

 dd = 'DD'random(99999)

 'alloc f('dd') ds(temp.text) new spa(1,1) tr' ,

 'recfm(f b) lrecl(80) blksize(32720)'

 macopt = 'This is a test of the ISPF Edit Macro Parm'

 Address ISPExec

 'Control Display Save'

 'Edit Dataset(temp.text) Macro(rxemac) Parm(macopt)'

 'Control Display Restore'

 Address TSO

 'free f('dd') delete'

The ‘control display save/restore’ is very helpful to save the ISPF display state and restore

it around the Edit.

In this example it:

1. Defines a random DDname to prevent conflicts with existing allocations

2. Allocates a data set

3. Defines the macopt variable which will be passed to the macro as a parm

4. Saves the display environment

5. Edits a data set with the data set name specifying the macro to use (rxemac) and

the name of a REXX variable that contains the parm (macopt) to be passed to the

Edit macro

6. Restores the display environment

7. Frees and Deletes the data set

Within the Edit Macro the parm is acquired from the macro statement:

/* rexx */

 Address ISREdit

 'macro (macopt)'

 'caps off'

 'number off'

 'recovery on'

 "line_after .zfirst = 'This is line number 1'"

 "line_after .zfirst = 'This is line number 2'"

 'line_before .zfirst = msgline (macopt)'

What this Edit Macro does is:

1. Define the ISPF Edit environment (Address ISREdit)

2. Indicate this is a macro and that a parm may be passed (macopt)

3. Turns Caps off, Numbers off, and turns Recovery on

4. Inserts 2 lines of text into the empty data set

5. Inserts a message with the passed parm text.

6 June 2021 ISPF Developer Tips/Tricks Page 75

Define the Initial Macro Using an ISPF Variable (1.2)
There are times where there is a need/requirement to have all Edits during the application

start with an Edit Macro, but the application does not invoke Edit directly (e.g. Edit is

invoked via a LMDDISP or MEMLIST). In this case define the Initial Macro by setting the

ISPF Variable ZUSERMAC (must be in the share or profile pool). The macro then must be

able to be found in the normal search order (LPA, LINKLIST, STEPLIB, ISPLLIB,

SYSEXEC, SYSPROC).

For example:

/* REXX */

. . .

zusermac = ‘ieditmac’

Address ISPExec

‘VPut (zusermac) Shared’

. . .

6 June 2021 ISPF Developer Tips/Tricks Page 76

Passing Data to an Edit Macro
There are at least two easy techniques to pass data to an Edit Macro.

The 1st is demonstrated in the above section using the PARM keyword when invoking ISPF

Edit. That is effectively the same as entering the data on the ISPF Edit command line when

invoking the macro – see Centering Text using an Edit Macro, above.

The 2nd technique is to have the Edit Macro use ISPF VGET services to retrieve the ISPF

variables from the ISPF variable pool. This technique allows for more flexibility as more

than a single value can be processed by using multiple ISPF variables.

6 June 2021 ISPF Developer Tips/Tricks Page 77

Invoking an Edit Macro on All Members of a PDS
RXDOALL, RXPOPDO and RXPOPM

This example demonstrates how to invoke an ISPF Edit Macro on all members of a PDS.

The macro can do anything but for this example the macro will change one value to

another.

/* --------------------- rexx procedure ---------------------- *

 | Name: DoAll |

 | ISPF - Developers - Tips and Tricks |

 | |

 | Function: This rexx exec will process the specified |

 | ispf edit macro against every member of the |

 | specified partitioned dataset. |

 | |

 | Only standard system services are used. The |

 | LISTD TSO command with the MEMBERS keyword |

 | is used to extract the member names. |

 | |

 | Syntax: %DoAll dsname edit-macro |

 | |

 | Sample Edit Macro to change SYS1 to SYS2 (called chsys1t2): |

 | Address ISREDIT |

 | "MACRO" |

 | "CHANGE 'DSN=SYS1.' 'DSN=SYS2.' ALL" |

 | "SAVE" |

 | "END" |

 | |

 | Sample Execution: %Doall 'sys2.testjcl' chsys1t2 |

 | |

 * --- */

 /* --------------------------------- *

 | Get the target data set and macro |

 * --------------------------------- */

 arg dsn exec

 /* -- *

 | Fix up data set name for use (no quotes) |

 * -- */

 if left(dsn,1) <> "'" then do

 dsn = sysvar(syspref)"."dsn

 end

 else do

 dsn = substr(dsn,2,length(dsn)-2)

 end

 /* -------------------------- *

 | Setup Outtrap and do ListD |

 * -------------------------- */

 x = outtrap("lm.","*")

 "LISTD" "'"dsn"'" "MEMBERS"

 x = outtrap("off")

 /* ------------------- *

 | Process all members |

 * ------------------- */

 do i = 7 to lm.0

 parse value lm.i with mem extra

 Address ISPEXEC "EDIT DATASET('"dsn"("mem")') MACRO("exec")"

 end

6 June 2021 ISPF Developer Tips/Tricks Page 78

Another example of this is the RXPOPDO exec that will process all members of the target

PDS and report on all ISPF Popup Panels, those members with)BODY and a WINDOW(

parameter. The report will recommend a ‘centered’ AddPop location (row and column).

To use this exec execute it passing it the data set name of the PDS with the ISPF Panels.

Here is a sample report for the example PDS:

ISPF Panel PopUp Centering Suggestions

Panel ADDPOP Command

-------- -------------------------

$DEVCPYP ADDPOP ROW(7) COLUMN(7)

$DEVPX ADDPOP ROW(7) COLUMN(6)

PNABC ADDPOP ROW(7) COLUMN(17)

PNFLDH1 ADDPOP ROW(7) COLUMN(18)

PNFLDH2 ADDPOP ROW(7) COLUMN(18)

PNPOP ADDPOP ROW(7) COLUMN(18)

PNPREXX ADDPOP ROW(7) COLUMN(16)

PNPROG1 ADDPOP ROW(7) COLUMN(29)

PNPROG2 ADDPOP ROW(7) COLUMN(16)

PNSCRL ADDPOP ROW(7) COLUMN(6)

PNVDSN ADDPOP ROW(7) COLUMN(14)

The RXPOPM example is the ISPF Edit Macro which may be used by itself on any ISPF

PopUp Panel and will insert a noteline with the recommendation:

****** ********************************* Top of Data ******

=NOTE= Suggested ADDPOP Command: ADDPOP Row(8) Column(18)

000001)ATTR DEFAULT(%+_)

000002 /* ISPF - Developers - Tips and Tricks */

000003 @ type(output) caps(off) just(left)

000004)BODY WINDOW(45,8)

000005 +

Changing ISPF Edit Commands with Macros
RXEM, RXEME, RXEMS and RXEMTRY

There are times when you need to change the behavior of an ISPF Edit command. This

example demonstrates how to change the way both END and SAVE work by defining an

Alias of those commands to an Edit Macro.

The RXEMTRY is a sample REXX exec that will drive ISPF Edit for this demonstration.

/* rexx */

Address ISPExec

'vget (ztempf)'

"Edit dataset('"ztempf"') macro(rxem)"

RXEM is the primary ISPF Edit Macro that is called with the ISPF Edit command. It sets up

the ISPF Edit environment by:

• Issuing a RESET ALL to remove a of the ‘annoying’ ISPF Edit information

messages.

• Defining the ISPF End command to the RXEME Edit Macro.

6 June 2021 ISPF Developer Tips/Tricks Page 79

• Defining the ISPF Save command the REXEMS Edit Macro.

• Turning off Caps and Numbers.

• Inserting 3 message lines to instruct the user how the demonstration works:

/* REXX */

Address ISREdit

'Macro' /* First indicate we are an Edit Macro */

'Reset all' /* Then Reset to turn off all messages */

'Define end alias rxeme' /* Now define END as an Alias */

'Define save alias rxems' /* And Save as an Alias */

'caps off' /* Now turn off Caps */

'numbers off' /* and turn Numbers off as well */

text = 'This demonstrates changing the Save and End commands.'

'line_after .zfirst = msgline (text) '

text = 'Enter the word DONE (any case) in a record to allow Save' ,

 'or End to work.'

'line_after .zfirst = msgline (text) '

text = 'Or enter the CANCEL command to exit ISPF Edit.'

'line_after .zfirst = msgline (text) '

Both ISPF END and SAVE commands will not invoke the RXEME and RXEMS Rexx exec’s

which will both check for the word ‘DONE’, in upper/lower/mixed case, and only then

process the real ISPF command. If the word is not found, then the user is informed using

ISPF messages.

The RXEME code is below:

/* Rexx */

Address ISREdit /* Setup Addressing to ISPF Edit */

 'Macro' /* Indicate we are a macro */

 "Find 'done' first" /* Do a FIND for the word 'DONE' */

 if rc = 0 then do/* if found then: */

 'define end reset' /* Reset the alias definition for END */

 'define save reset' /* Reset the alias definition for SAVE */

 'end' /* Do the real Edit END command */

 exit 0 /* And edit the macro */

 end

 zedsmsg = 'Warning'

 zedlmsg = left('To exit ISPF Edit enter the word DONE somewhere',75) ,

 'in the text or enter the CANCEL command.'

 Address ISPExec

 'setmsg msg(isrz001)'

And the RXEMS code:

/* Rexx */

Address ISREdit /* Setup Addressing to ISPF Edit */

'Macro' /* Indicate we are a macro */

"Find 'done' first" /* Do a FIND for the word 'DONE' */

if rc = 0 then do/* if found then: */

 'SAVE' /* Do the real Edit SAVE command */

 exit 0 /* And edit the macro */

end

zedsmsg = 'Warning'

zedlmsg = left('To Save the data enter the word DONE somewhere',75) ,

 'in the text or enter the CANCEL command to exit.'

Address ISPExec

'setmsg msg(isrz001)'

6 June 2021 ISPF Developer Tips/Tricks Page 80

Symbolic Handling
This section will describe how to prevent an Edit Macro from interpreting an ampersand (&)

as a variable when executing an Edit command.

The editor scans edit statements within program macros to do variable substitution like the

CLIST processor. Only one level of substitution is done. This is the default; use the SCAN

assignment statement to prevent it.

The SCAN macro command sets scan mode, which controls the automatic replacement of

variables in command lines passed to the editor.

The SCAN assignment statement either sets the value of scan mode (for variable

substitution) or retrieves the value of scan mode and places it in a variable.

1) Syntax

ADDRESS ISREDIT

 “(varname) = SCAN”

 “SCAN OFF”

 “SCAN ON”

2) Return Codes

0 Normal Completion

24 Severe Error

3) Example – No. 1

To set a line whose number is in variable &LNUM to:

&SYSDATE is a CLIST built-in function

Set scan mode off and issue the LINE command with &&SYSDATE as the

CLIST function name. The CLIST processor strips off the first &, but, because

scan mode is off, the editor does not remove the second &:

ISREDIT SCAN OFF

ISREDIT LINE &LNUM = "&&SYSDATE is a CLIST built-in function"

ISREDIT SCAN ON

Because the ISPEXEC call interface for REXX EXECs allows you to specify

parameters as symbolic variables, a single scan always takes place before the

syntax check of a statement. Therefore, the rule of using two ampersands (&)

before variable names to avoid substitution of variable names also applies to

REXX EXECs.

6 June 2021 ISPF Developer Tips/Tricks Page 81

4) Example – No. 2

To exclude all lines and find/display all occurrences of “SYS1.SDITMOD1” with

a volume of &SYSRS2, no matter how many spaces are between them:

"ISREDIT MACRO NOPROCESS"

SPACE = ""

VAR1 = "(SYS1.SDITMOD1)"

VAR2 = "VOL(&&SYSR2)"

LEN1 = LENGTH(VAR1)

LEN2 = LENGTH(VAR2) - 1

LEN3 = 71 - LEN1 - LEN2

ADDRESS ISREDIT

 "SCAN OFF"

 "X ALL"

 DO J = 1 to LEN3

 SPACE = SPACE" "

 TEXT = VAR1||SPACE||VAR2 "F '"TEXT"' ALL"

 END

Note that this may not always work per a comment from IBM. The guaranteed way to do

this is to use 4 &’s thus:

Address ISREDIT

‘Macro’

“C ‘&&&&ABC’ ‘XYZ’ ALL’

This does work very nicely.

6 June 2021 ISPF Developer Tips/Tricks Page 82

Library Services

LMDLIST – List Data Sets
RXLMD

LMDLIST will return to the application information on all the data sets under the provided

high-level-qualifier. This example demonstrates that in a simple way. Note that this code

can also be executed in batch as there are no display panels used.

/* ------------------------ rexx ---------------------------- *

 | This REXX code demonstrates using the LMDLIST ISPF Service |

 | to list information about data sets under the provided |

 | high-level-qualifier (hlq). |

 | |

 | If no hlq is provided then the users prefix or userid |

 | will be used. |

 * -- */

 arg hlq

/* -------------------------------- *

 | initialize our working variables |

 * -------------------------------- */

 parse value '' with null dsn

 parse value '0 0 0' with total count used

/* --------------------------- *

 | Validate and/or set the HLQ |

 * --------------------------- */

 if hlq = null then do

 if sysvar('syspref') /= null then

 hlq = sysvar('syspref')

 else hlq = sysvar('sysuid')

 end

/* ----------------------- *

 | Define ISPF Environment |

 * ----------------------- */

 Address ISPEXEC

/* ------------- *

 | Setup LMDINIT |

 * ------------- */

 "Lmdinit Listid(LMD) Level("hlq")"

/* ----------------------------------- *

 | Process ALL data sets under the HLQ |

 * ----------------------------------- */

 do forever

 "Lmdlist Listid("lmd") Stats(YES) Dataset(dsn) Option(LIST)"

/* ---------------------------- *

 | If return > 0 then finish up |

 * ---------------------------- */

 if rc > 0 then do

 "Lmdfree listid("lmd")"

 say "All done - count:" count 'used:' used

 exit 4

 end

/* ----------------------------- *

 | Update counter and report out |

 * ----------------------------- */

 count = count + 1

 say count":" "Dataset:" dsn "Vol:" zdlvol "Used:" zdlsize ,

 "Device: *"zdldev"*" ,

 "Mig:" zdlmigr c2x(zdldev)

 sysvolume = ""

 if datatype(zdlsize) = 'NUM' then

 used = used + zdlsize

 end

6 June 2021 ISPF Developer Tips/Tricks Page 83

Sample Batch JCL to run this example:

//JOBNAME JOB (BATCH),REGION=0M,NOTIFY=&SYSUID,CLASS=A

//OUT OUTPUT DEFAULT=YES,JESDS=ALL,OUTDISP=(HOLD,HOLD)

//* -- *

//* Demonstration of running an ISPF application in Batch. *

//* -- *

//TSO EXEC PGM=IKJEFT01

//SYSEXEC DD DISP=SHR,DSN=hlq.DEVTIPS.PDS <=== Change

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 ISPF CMD(%TESTLMD)

//ISPPROF DD UNIT=VIO,

//SPACE=(TRK,(1,1,5)),

//DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)

//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU

//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU

//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU

//ISPTLIB DD UNIT=VIO,DISP=(NEW,PASS),SPACE=(TRK,(1,1,5)),

//DCB=(RECFM=FB,LRECL=80,BLKSIZE=27920)

// DD DISP=SHR,DSN=ISP.SISPTENU

//ISPLOG DD DUMMY,DCB=(LRECL=120,BLKSIZE=2400,DSORG=PS,RECFM=FB)

Quick (Lightening Fast) List of Data Sets (1.2)
If all that is required is a list of data sets then there are two options beside the LMDLIST,

and they don’t require ISPF services to use them. The LISTC routine took 10 seconds on a

sample hlq where LMDLIST took 15 seconds. The Catalog Search Interface (CSI) routine

took less than a second.

LISTC
The first is using LISTC in combination with OUTTRAP:

/* REXX */

Arg HLQ

Call outtrap ‘list.’

‘listc level(‘hlq’)’

Call outtrap ‘off’

Do I = 1 to list.0

 Say list.i

 end

It isn’t elegant but it does work.

Catalog Search Interface
The other option, which is even faster is to grab the IBM provided sample code found in

SYS1.SAMPLIB(IGGCSIRX) and tailor it for your needs.

6 June 2021 ISPF Developer Tips/Tricks Page 84

Miscellaneous

Browsing Data in a REXX Stem
RXSTEM RXSTEME

Many times, an ISPF dialog will collect information in a REXX STEM variable and need to

present that to the user. This approach is very simple using a temporary data set and ISPF

Library Services.

/* --------------------- REXX ------------------------ *

 | Sample routine to browse data from a stem variable. |

 * --- */

 do i = 1 to 200 /* Define our test data */

 stem.i = 'Test data record number' right(i+1000,3)

 end

 stem.0 = i /* update the stem.0 with record count */

/* ------------------------------- *

 | Randomly define a DDName to use |

 * ------------------------------- */

 dd = 'dd'random(9999)

/* -- *

 | Allocate a temporary data set for our data |

 * -- */

 'Alloc f('dd') new spa(5,5) tr' ,

 'recfm(v b) lrecl(80) blksize(0)'

/* ----------------------- *

 | Write out the stem data |

 * ----------------------- */

 'Execio * diskw' dd '(finis stem.'

/* -- *

 | Access the Temporary Data Set using ISPF |

 | Library Services. |

 | Then using ISPF Browse service to browse the data. |

 | And use Library Services to Free the Data Set. |

 * -- */

 Address ISPExec

 'lminit dataid(ddb) ddname('dd')'

 'browse dataid('ddb')'

 'lmfree dataid('ddb')'

/* ----------------------------- *

 | Last Free the z/OS Allocation |

 * ----------------------------- */

 Address TSO

 'Free f('dd')'

A better and easier approach is to use the STEMEDIT command which can be found on

the CBTTape in File 895. Here is the code for that:

/* --------------------- REXX ------------------------ *

 | Sample routine to browse data from a stem variable. |

 * --- */

 do i = 1 to 200 /* Define our test data */

 stem.i = 'Test data record number' right(i+1000,3)

 end

 stem.0 = i /* update the stem.0 with record count */

 call stemedit 'Browse',stem.,,,'Stem stem. Browsing'

Tip: Using this technique will display all the active REXX variables:

Call stemedit ‘edit,’*’

6 June 2021 ISPF Developer Tips/Tricks Page 85

Sample ISPF Notepad Application

RXNOTEPD

ISPF can be easily extended by installing your own tools with an ISPF Command Table

update (see Add to the ISPF Commands Table) above. The REXX Notepad (RXNOTEPD)

sample code demonstrates the beauty of this capability. Once the command table is

updated then entering NOTE on any ISPF command line will open the notes partitioned

dataset.

The sample code includes three options for the editor to demonstrate how easy it is to

provide added functionality for the ISPF users.

6 June 2021 ISPF Developer Tips/Tricks Page 86

Other Tricks

Edit Macro or TSO Command – same REXX Code

RXTM and RXTSOMAC

This sample code, when placed in a REXX exec will let the code work as either an Edit

macro, or as a TSO command (inspired by an IBM-Main posting by Bob Bridges).

/* -- *

 | Test if called as an Edit Macro |

 | RC > 0 means TSO else Edit Macro |

 | |

 | ISPF - Developers - Tips and Tricks |

 * -- */

 Address ISREdit

 'macro (options)'

 if rc > 0 then do

 Address TSO

 tsomac = 1

 parse arg options

 say 'Lines of code via sourceline:' sourceline()

 end

 else tsomac = 0

 If tsomac = 1

 then say 'Running as a TSO Command'

 else do

 say 'Running as an ISPF Edit Macro'

 '(dataset) = dataset'

 '(member) = member'

 '(last) = linenum .zlast'

 say 'Dataset:' dataset 'Member:' member 'Lines:' last+0

 'end'

 end

 Exit

6 June 2021 ISPF Developer Tips/Tricks Page 87

ISPF in Batch
JCBAT1 and JCBAT2

For ISPF in batch the batch TMP (terminal monitor program) is used. It is recommended to

use IKJEFT1B which has the advantage over IKJEFT01 of returning the return code of the

last executed command.

Below is an example of running the IBM TASID program in batch. This is an ISPF

application written by Doug Nadel.

The Snapshot utility (Option 8) allows you to create a sequential file which contains data

obtained by most of the TASID options. The name of the data set can be changed by using

the Settings pulldown on the TASID main menu.

The PRINTDS command is used in this example to obtain a hardcopy of data set

userid.TASID.SNAPSHOT through foreground copying to SYSOUT.

//JOBNAME JOB (BATCH),REGION=0M,NOTIFY=&SYSUID,CLASS=A

//OUT OUTPUT DEFAULT=YES,JESDS=ALL,OUTDISP=(HOLD,HOLD)

//TSO EXEC PGM=IKJEFT1B

//STEPLIB DD DISP=SHR,DSN=TASID.LOAD <=== Change

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 PROFILE PREFIX(userid) <=== Change

 ISPSTART PGM(TASID) PARM(8)

 PRINTDS DSNAME(TASID.SNAPSHOT) CCHAR NOTITLE SYSOUT(R) HOLD

//ISPPROF DD UNIT=VIO,SPACE=(TRK,(1,1,5)),

//DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)

//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU

//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU

//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU

//ISPTLIB DD UNIT=VIO,DISP=(NEW,PASS),SPACE=(TRK,(1,1,5)),

//DCB=(RECFM=FB,LRECL=80,BLKSIZE=27920)

// DD DISP=SHR,DSN=ISP.SISPTENU

//ISPLOG DD DUMMY,DCB=(LRECL=120,BLKSIZE=2400,DSORG=PS,RECFM=FB)

This is another example:

//JOBNAME JOB (BATCH),REGION=0M,NOTIFY=&SYSUID,CLASS=A

//OUT OUTPUT DEFAULT=YES,JESDS=ALL,OUTDISP=(HOLD,HOLD)

//TSO EXEC PGM=IKJEFT1B

//SYSEXEC DD DISP=SHR,DSN=hlq.DEVTIPS.PDS <=== Change

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 ISPF CMD(%TESTLMD)

//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU

//ISPTLIB DD DISP=SHR,DSN=ISP.SISPTENU

//ISPPROF DD UNIT=VIO,SPACE=(TRK,(1,1,5)),

//DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)

//ISPPLIB DD UNIT=VIO,DISP=(NEW,PASS),SPACE=(TRK,(1,1,5)),

//DCB=(RECFM=FB,LRECL=80,BLKSIZE=27920)

//ISPSLIB DD UNIT=VIO,DISP=(NEW,PASS),SPACE=(TRK,(1,1,5)),

//DCB=(RECFM=FB,LRECL=80,BLKSIZE=27920)

//ISPLOG DD DUMMY,DCB=(LRECL=120,BLKSIZE=2400,DSORG=PS,RECFM=FB)

The only ‘real’ data sets required in batch is ISPMLIB and ISPTLIB, the other ISPF data

sets can be temporary.

6 June 2021 ISPF Developer Tips/Tricks Page 88

Randomize DDname and Table Names

RXRAND

There are several techniques for randomizing both DDnames and ISPF Table names with a

goal to make sure that the names are unique.

Based on the REXX Exec Name
This technique uses the REXX PARSE SOURCE command to get the name of the REXX

Exec that is being executed and then use that for the DDname or a temporary Table name.

This information can also be used for work data set names that are allocated using a data

set name. One advantage to this approach is that it is easier when debugging to determine

the REXX code ‘causing’ the ‘problem’.

To get the active REXX Exec name use this sample code:

/* rexx */

parse source . . exec ddname .

say 'exec:' exec

say 'ddname:' ddname

And what you get back is this when the code is named TSOURCE:

exec: TSOURCE

ddname: SYSEXEC

Using the REXX Random Function
This technique is more flexible while reducing the debugging information;

/* rexx */

dd = 'DDN'random(99999)

say 'ddname:' dd

With this approach the variable DD is assigned a value that starts with DDN followed by 5

random numbers between 1 and 99999. The character string DDN can easily be changed

to something meaningful that will help in debugging.

Another advantage is that if this is used in an ISPF dialog that is opened in multiple ISPF

screens, then you can guarantee that there will be no DD name or Table name conflicts.

Another Random String
Another approach is to use code similar to this:

/* -- *

 | Using the day of month and second since midnight |

 * -- */

 ddn = 'D'left(date('e'),2)''right(time('l'),5)

 say 'DDname:' ddn

With this approach we use the 2 digit day of the month and the 5 digits for the seconds

since midnight, all preceded by a character to yield an 8 character DDname.

6 June 2021 ISPF Developer Tips/Tricks Page 89

Using /dev/random
For a more random value use the OMVS /dev/urandom device thus:

x = bpxwunix('head -c 4 /dev/urandom',,so.,se.)

 random = c2x(so.1)

This generates a 4-character hex random string that is then converted (c2x) to human

readable 8 characters. Change 4 to any number if you need a longer or shorter string.

Getting the DDname from the System
In this example, using BPXWDYN, the ddname is determined by the system and returned

into a variable (dd1). Then the data in the data set is read using execio, and the allocation

then freed using BPXWDYN.

This code requires that the user have OMVS access.

/* REXX */

ds=’your.dataset.name’

cc=bpxwdyn('alloc da('ds') shr rtddn(dd1)') /* return ddname in dd1 */

if cc<>0 then say alloc’ ds ‘rc' cc

else do

 "execio * diskr" dd1 "(stem data. finis)"

 cc=bpxwdyn('free dd('dd1')')

 end

6 June 2021 ISPF Developer Tips/Tricks Page 90

Stem Sort
Consider the following directory list application. To facilitate sorting by various fields, a

directory stem named dir. is used.

PGLITE® TRIDJK.MBRGEN2 Row 1 of 53

Command ===> Scroll ===> CSR

 Name GenNum VV MM Created Changed Size Init ID

. $$$$$$$$ 0 01.01 2019/04/20 2019/04/20 09:23 2 1 TRIDJK

. $$$$$$$$ 1 01.06 2019/04/20 2019/05/03 12:27 5 1 TRIDJK

The REXX code snippet below shows how to set up a stem sort using BPXWUNIX SORT.

Sort keys are defined for each field in the stem to be sorted. For the CHANGED and SIZE

fields, a primary and secondary key are used. For the CREATED and ID fields, only a

primary key is used.

Note that the input and output to the sort use the same stem.

 created = '-dr -k5,5'

 changed = '-dr -k6,6 -k7,7'

 size = '-nr -k9,9 -k8,8'

 id = '-dr -k11,11'

 if abbrev("CREATED",word(column,1),2) = 1 then

 call do_sort created

 if abbrev("CHANGED",word(column,1),2) = 1 then

 call do_sort changed

 if abbrev("SIZE",word(column,1),1) = 1 then

 call do_sort size

 if abbrev("ID",word(column,1),1) = 1 then

 call do_sort id

 do_sort:

 parse arg key

 env.0=1

 env.1='LC_COLLATE=S370'

 stderr.0 = 0

 call BPXWUNIX "/bin/sort "key, ,

 "dir.", "dir.", "stderr." "env."

 return

6 June 2021 ISPF Developer Tips/Tricks Page 91

Full Stem Sort example

RXSTEMS

This example is self-contained to sort a stem.

 /* ---------------------- REXX --------------------------- *

 | From John McKown to sort a stem using unix sort in OMVS |

 * --- */

 XX=SYSCALLS('ON')

 If xx > 3 Then Do

 Say "SYSCALLS('ON') Failed. RC="xx

 exit

 End

 do i = 1 to 12

 a.i = random(999)

 end

 a.0=12

 stdout.0=0 ; stderr.0=0

 call bpxwunix "/bin/sort -n",a.,a.,stderr.

 say 'a.0='a.0

 do i=1 to a.0

 say "a."i"="a.i

 end

 say 'stderr.0='stderr.0

 do i=1 to stderr.0

 say "stderr."i"="stderr.i

 end

First is a verification that the user has access to OMVS. Next a stem with 12 elements is

created using random 3-digit numbers.

More on Stem Sorting using BPXWUNIX
‘Borrowed from an IBM-Main posting by Albert Ferguson:

Under zOS REXX does have a STEM Sort (via BPXWUNIX). If you have an OMVS

Segment on your USERID (and as of zOS 2.1+ you should), try this:

/*

 Do a Binary Sort (use -tn for Text)

 Using 2nd Word in each StemIn. Record as primary sort key

 Using 1st Word in each StemIn. Record as secondary sort key

 More doc on Unix Sort

at http://publibz.boulder.ibm.com/epubs/pdf/bpx1cd10.pdf

*/

x = BPXWUNIX("/bin/sort -bn -k2,2 -k1,1","StemIn.","StemOut.")

Also available via the USS side of zOS is Regex support:

/*

 Get the JESMSGLG output from a JOB, e.g. via SDSF or (E)JES and put in

the STEM JesMsgLg.

 Use the USS grep in, Extended mode, to search for all STEPS with an

RC=12, 16, or 20

 Return only those steps to the BadSteps. STEM variable ...

 Add a step using this at the very END of a JOB to determine if

something did not go as expected, and then

 possibly correct it!

*/

x = BPXWUNIX("/bin/grep -E -e'¬.{30}(.{10} (12|16|20)'",

"JesMsgLg.","BadSteps.")

http://www.google.com/url?q=http%3A%2F%2Fpublibz.boulder.ibm.com%2Fepubs%2Fpdf%2Fbpx1cd10.pdf&sa=D&sntz=1&usg=AFQjCNH5xb1fnEUlyz6HEX4c_OQ-1e-sEg

6 June 2021 ISPF Developer Tips/Tricks Page 92

Converting the User Provided Data Set Name to a Full Data Set Name
Many times, the user, when prompted to enter a data set name, will enter the data set

name without fully qualifying it, and without the default TSO Prefix. That isn’t a problem is

all references to the data set name are using standard system services that will resolve the

data set name properly. If the data set name must be fully qualified within the application

the easy way to do that is to use the TSO LISTDSI service, which will return the fully

qualified data set name (without quotes) in the SYSDSNAME variable.

/* rexx */

arg dsname

x = listdsi(dsname)

Say ‘Input DSN:’ dsname

Say ‘Full DSN:’ sysdsname

Note that this works whether the user is running with, or without, a TSO PREFIX.

Default ISPF Terminal Type
It has been recommended that the ISPF Terminal Type 6 (3278T) model be selected from

ISPF Primary Menu Option 0.

Sharing REXX Variables, including stems, with other REXX exec’s

RXSHRVAR

One of the major issues with REXX on z/OS is the lack of a global pool to share REXX

variables. This forces the developer to write very large REXX exec’s instead of writing more

modular individual REXX execs.

There are solutions on the CBT Tape – look for STEMPUSH and STEMPULL and

REXXGBLV. These are assembled and linked solutions that are worth checking out if you

are allowed to use open-source tools.

If you just want to roll-your-own (ryo), and if your application runs under ISPF, then you can

use the ISPF Shared Variable Pool to pass REXX data from one REXX exec to another.

The RXSHRVAR sample demonstrates how to convert a REXX stem (single level only in

the example but that can obviously be expanded upon) into ISPF variables and then

convert the ISPF variables back to REXX stem variables.

There are two parts of the example. The 1st part converts the REXX variables to ISPF

variables and the 2nd part converts the ISPF variables to REXX variables. This technique

utilizes the REXX INTERPRET instruction (which can be confusing at first look so use your

favorite browser search engine to learn more about it).

RXSHRVAR – Converting REXX variables to ISPF variables

/* --- *

| Create unique ISPF variables from each stem and |

| VPUT the ISPF variable into the shared variable pool. |

| |

| The samplec variable contains the count of the number |

| of variables. |

* --- */

samplec = sample.0 /* setup count variable */

'vput (samplec) shared' /* vput the variable */

/* --- *

6 June 2021 ISPF Developer Tips/Tricks Page 93

| Process each individual stem variable using the REXX |

| INTERPRET command. |

| |

| This converts the stem.# value to a valid ISPF variable |

| which can be anything you want to call it. It just has to |

| be a valid ISPF variable name (and 8 characters or less). |

* --- */

do i = 1 to sample.0

 interpret 'sample'i '= sample.'i

 'vput (sample'i') shared'

end

RXSHRVAR – Converting ISPF variables back to REXX variables

/* -- *

| Get the samplec (count) ISPF variable into a REXX variable |

| and then VERASE it to remove it from the ISPF shared |

| variable pool. |

* -- */

'vget (samplec) shared' /* get the count of the stem variables */

'verase (samplec) shared' /* clean up ispf var pool */

sample.0 = samplec /* set sample.0 to the count */

/* --- *

| Retrieve from the ISPF Shared Variable Pool each unique |

| stem variable and place it back into the stem using |

| the REXX INTERPRET command. |

* --- */

do i = 1 to sample.0

 'vget (sample'i') shared' /* get the individual var */

 'verase (sample'i') shared' /* clean up ispf variable */

 interpret 'sample.'i '= sample'i /* set the stem */

end

These examples use drop and verase to clean up the REXX and ISPF variable pools to

demonstrate how to use these tools.

The comments in the code were created using the CMT ISPF Edit macro (aka ISPF Edit

command), which is included with this package.

Convert a Number to Human Readable

RXNUMC and RXNUMCE

This piece of code was sent to the author by Doug Nadel (IBM ISPF developer and author

of TASID, among other things) many years ago and it is a very useful piece of code:

 /* ----------------- REXX ------------------------- *

 | Take a number and display it with comma's in it. |

 | |

 | e.g. 1000 becomes 1,000 |

 | |

 | usage: comma_num = addcomma(number) |

 | |

 | supports numbers up to 34 digits long |

 | |

 | Copied from Doug Nadel |

 * -- */

AddComma:

 arg bignum

 cbignum =

strip(translate('0,123,456,789,abc,def,ghi,jkl,mno,pqr,stu,vwx', ,

 right(bignum,34,','), ,

 '0123456789abcdefghijklmnopqrstuvwx'),'L',',')

6 June 2021 ISPF Developer Tips/Tricks Page 94

 return cbignum

This code will convert a plain numeric value, up to a maximum of 34 digits) such as

1981456 to 1,981,456.

6 June 2021 ISPF Developer Tips/Tricks Page 95

Useful Tools
IBM ISPF includes several useful tools, among these are:

ISRDDN
Use this tool before and after testing your application to verify that all allocations have been

released. To use it issue TSO ISRDDN from any ISPF Command line.

ISPLIBD
This ISPF command will display all the current ISPF LIBDEF allocations. To use it issue

ISPLIBD on any ISPF Command line. Note that this will only show the allocations for the

current ISPF Screen and not on other split screens.

ALTLIB Display
The ALTLIB command, with the Display parameter, will display the current ALTLIB

allocations. It only displays the DDnames and not the data set names, which is a shame.

Debugging Hints/Tips
Displaying the ISPF Panel Name
Many times, it is useful to know which ISPF Panel is being displayed. To display the active

Panel name, issue the PANELID ON command and then the reverse is PANELID OFF.

ISPF Dialog Test
ISPF dialog test (Primary Option 7) is a dialog that can be used to test your ISPF applications.

---------------------------- Dialog Test -------------------------

 Menu Utilities View Help

 Primary Option Panel

Option ===>

1 Functions Invoke dialog functions/selection panel

2 Panels Display panels

3 Variables Display/set variable information

4 Tables Display/modify table information

5 Log Browse ISPF log

6 Dialog Services Invoke dialog services

7 Traces Specify trace definitions

8 Breakpoints Specify breakpoint definitions

Whilst there are many options in Dialog Test, Traces, Breakpoints and Functions are the options
most commonly used.

A typical debugging session begins by “activating” traces (functions and variables) and breakpoints.
This is done by specifying YES in the “Active” column for these definitions.

After setting your definitions, start your dialog using Functions option of Dialog Test. When the
dialog completes, you can browse the ISPF log (Option 5) to see the results. If your Log is allocated
to SYSOUT, then you can use SDSF to browse the ISPLOG after accessing the Job Data Set Display
panel.

REXX Trace
1. TRACE controls the tracing action, how much information is displayed, during

processing of a REXX program. TRACE is mainly used for diagnostic purposes.

6 June 2021 ISPF Developer Tips/Tricks Page 96

a. TRACE I (Intermediates) traces all clauses before execution and traces

intermediate results during evaluation of expressions.

b. TRACE ?i will pause after each display, allowing the user to interactively

issue any REXX command to assist with debugging.

c. TRACE OFF, or just TRACE, will turn off tracing.

2. Tracing can also be enabled from the ISPF Command line using the TSO

commands:

a. TSO EXECUTIL TS to initiate tracing using the ?i option

b. TSO EXECUTIL TE to terminate tracing

3. Tracing can also be performed in both Panel Rexx and Skeleton Rexx.

Miscellaneous Tips
1. Use ISPVCALL before and after to trace general stuff
2. Use ISPFTTRC to trace and capture skeletons before and after. Great

tool. Requires DD for ISPFTTRC to be allocated.

3. Example:

if debug

/* show all work to ISPFTTRC DD */

then ADDRESS TSO "ISPFTTRC READ(DETAIL) RECORDS(*) TBV(DETAIL)"

"FTINCL S@CPYHCD"

lrc = rc

/* RC=8 usually means member not found */

/* RC=20 usually means variable error */

4. See Appendix C of ISPF Dialog Developers guide for notes on Panel and File

Tailoring Traces

5. The use of)REXX section in skeletons to display variables. The calling REXX exec

issues TSO “ISPFTTRC xxxxxx ”.

6. if you get RC=20 on FTINCL, display zerrlm. This assumes “ISPEXEC CONTROL

ERRORS” is set.

ADDRESS ISPEXEC "FTINCL “myskel

ftincl_RC = rc

if ftincl_RC <> 0

then do

say ZERRSM ZERRLM /* optional */

 call error_rtn "FTINCL" ftincl_rc myskel ,

 “ZERRSM(“zerrsm”) ZERRLM(“zerrlm”)”

 end

7. Skeleton notes

a. Review operators, built-in functions, and control statements

)SEL &EML= Y

is not valid . this is valid

)SEL &EML = Y

b. Be wary of special characters like “<” “>”

//* look for errors > 0 - will fail

//* look for errors >>0 - will work

c. May need to utilize “SCAN OFF” and “SCAN ON”

d. Temporary datasets. Will need review for “&”

// DD DSN=&&&&TEMP, will resolve to

// DD DSN=&&TEMP,

8. Watch that tailored line does not exceed the allowed record length.

6 June 2021 ISPF Developer Tips/Tricks Page 97

Debugging ISPF Edit Macros
(contributed by Robert Prins)

Many of the edit macros presented earlier in this document are simple and if you would like

to write similar ones in REXX consisting of just a few lines of code, it's relatively easy to

debug them by inserting a "trace ?r" statement, and executing the code step-by-step, and

typing "exit" if you see that something's wrong. Do the development in "View" and you don't

even have to worry about accidentally saving the mess you made.

However, trying to use "trace ?r" to debug an edit macro that's a a bit longer, contains

(long) loops, might access other macros/execs, can quickly become an endless thankless

chore, as you will have to exit, look at the mess you created, swap screens, correct the

code, and start all over again. Sure, you could code some direct REXX statement(s) in

interactive mode to get you past the first error, make a (mental) note of what needs to be

changed in the code, and run to the next problem.

Wouldn't it be nice if you could just stop the macro running in its tracks, and look at the data

in the state it’s in to find out if it looks like what you expected it to look, or, for example

when you're manipulating data between macro set labels, that the labels are actually on the

correct lines, or, if you've realized that you made a mistake, swap to the other screen, and

make the changes straight when you find the problem?

The question is rhetorical...

Well, Doug Nadel (who else?) must have thought the same in a grey past, and that's why

he wrote a little gem called "ISREMSPY", a macro spy. You can embed it in your macro

during development, and when it's called, just by an "ISREMSPY" statement, it will stop the

macro, and present a simulated screen (sadly always using only 72 scrollable columns)

that shows the last executed macro command, and the state of the data. You cannot only

look at it. Press "END" and the macro will continue. Obviously, as soon as "ISREMSPY"

interrupts the macro, you're back into ISPF, can swap screens, make the required

corrections to your code, and continue running the macro (the old one!)

Tip: When you're developing a macro, add something like:

"isredit (SES) = SESSION"

if left(SES, 1) = 'E' then

 do

 zedsmsg = ''

 zedlmsg = 'Macro under development, can only be used in ''View'' mode'

 "ispexec setmsg msg(ISRZ001)"

 exit 1

 end

near the beginning, and you don't have to worry about accidentally messing up your data!

6 June 2021 ISPF Developer Tips/Tricks Page 98

Appendix

Useful Tools
These tools, along with the sample code for the various chapters, are included in a TSO

Transmit (XMIT) format file that is shared with this document.

CMT

CMT

CMT is an ISPF edit macro to simplify entry of comments. CMT enters all comments in the

syntax of the object being edited and formats them via sent/defaulted user parameters.

Defaults for execution are set/inquired via the CMT syntax #2, shown below, and some

may be overridden via the main CMT syntax #1.

All comments require a target line be defined in your data.

Syntax 1 to add comment line(s) (all parms optional)

CMT #,B,text

• #=INDENT 1 - 70, C (Center) or R (Right Justify) box

• B =BOXSIZE F S (Fixed 65 chars) or V (Variable size)

• cmt text blank shows popup panel to enter multiple lines.

Syntax 2 to Set CMT defaults (also may be set on popup panel)

CMT SET <parmId> <parm value>

parmid Indent, Boxsize, Charbox or Fixlength
parm value for I: #1-70, C or R B: F,S or V

C: any character F: 1-65

Download from http://lbdsoftware.com/ispftools.html.

LOADISPF/DROPISPF

LOADISPF
RXLISPF

LOADISPF and DROPISPF are a pair of REXX routines to be copied into your REXX code

that supports placing all ISPF elements (panels, messages, skeletons, CLISTs, and REXX)

inline in your REXX exec. It will, when called, scan your source code and dynamically

allocate temporary datasets and then ALTLIB or LIBDEF to them. Note that DROPISPF is

included in the LOADISPF member since they go together and DROPISPF must be called

at the close of your REXX code to release the allocations.

The syntax for defining the imbedded elements are:

Key Description

>START Identifies the start of the imbedded elements

>END Identifies the end of the imbedded elements

>CLIST The start of a CLIST

>EXEC The start of a REXX exec

>MSG The start of an ISPF Message member

>PANEL The start of an ISPF Panel

>SKEL The start of an ISPF Skeleton

http://lbdsoftware.com/ispftools.html

6 June 2021 ISPF Developer Tips/Tricks Page 99

Notes:

1. Any record that begins with a > will terminate the prior element. The key can be in

any case (e.g. >START >start >Start).

2. The CLIST, EXEC, MSG, PANEL, and SKEL must be followed by the element

name (e.g. >PANEL P1).

3. There can be multiple elements of each type.

4. Each element type results in a temporary PDS allocated with 5 directory blocks with

no dataset name (thus they are temporary datasets and may be allocated to VIO).

5. CLIST and EXEC temporary datasets are allocated using RECFM=VB and

LRECL=255 with the others being allocated RECFM=FB LRECL=80.

6. Some ISPF Panel special characters may result in a REXX interpreter error. The

solution is to place a REXX comment (/*) before the >Start record and a closing

comment (*/) after the >End record.

This is very useful, as it allows the application to be completely self-contained. There is no

need to distribute, or install, multiple elements when all of the REXX routines needed, all

the ISPF Messages, Panels, and Skeletons can be installed with one REXX exec.

See in the provided sample PDS member RXLISPF, which is a full example that includes

imbedded elements for a REXX Exec, an ISPF Message, an ISPF Panel, and an ISPF

Skeleton.

Be VERY CAREFUL if you use REXXFORM on your REXX exec that includes imbedded

elements so that you don’t reformat the imbedded elements.

Download both in the LOADISPF package from http://lbdsoftware.com/ispftools.html or use

the copy that is included in the example PDS.

REXXFORM

#RXFORM

REXXFORM is an ISPF edit macro used to format REXX EXECs by indenting DO and

SELECT groups and left-justifying lines at a selected column. REXXFORM also checks for

unbalanced DO and SELECT statements while providing a consistent format to your REXX

code that helps improves readability and maintainability.

REXXFORM was originally developed as a tool to format REXX code under XEDIT under

z/VM. It was ported to z/OS as an ISPF Edit Macro with some enhancements to take

advantage of the ISPF environment.

This command may only be used from the ISPF Edit command line.

Command Syntax is:

REXXFORM ? Display ISPF Tutorial Panel

REXXFORM left-margin indent-column (
options

Left-margin is the column all lines are
justified to (default is 4)

Indent-column is the column that DO and
Select statements are indented to from the
left-margin (default is 3)

Options are:

http://lbdsoftware.com/ispftools.html

6 June 2021 ISPF Developer Tips/Tricks Page 100

CI to justify comments to the left-margin
CJ to justify comments to column 1

By default, all records will be processed.

To select an individual record or a range use the following syntax:

S Select a single record to format

SS/SS Select a range of records to format

S# Select current record for # -1 (S4 is current plus 3)

Download from http://lbdsoftware.com/ispftools.html

STEMEDIT
This assembler sub-routine can be invoked by a REXX EXEC to display the contents of

stem variables using the ISPF BRIF, VIIF or EDIT services. STEMEDIT is a nice

complement to the REXX OUTTRAP function, when it is used in the ISPF/PDF

environment.

Download File 895 from www.cbttape.org.

TRYIT

#TRYIT

Overview

TRYIT is an ISPF Edit command that is designed to be used to test an Assembler program,

CLIST, REXX Exec, JCL, ISPF Panel or ISPF Skeleton while it is being edited. The way

this works is such that the JCL, CLIST, REXX Exec, ISPF Panel, or ISPF Skeleton does

not must be in a library in the existing SYSPROC, SYSEXEC, ISPPLIB, or ISPSLIB

allocations thus allowing the development and testing in other, less critical, data sets.

If a JCL Syntax checking product is available, then TRYIT can be used to invoke it - this is

assuming the product can be invoked as an ISPF Edit Macro (e.g. CA-JCLCheck and

JCLPrep).

For Assembler programs the active member will be assembled and optionally linkedited

into a specified target library. After entering TRYIT the user will be prompted to enter the

assembly and linkedit information if the member is determined to be an assembler

program.

For CLIST and REXX Exec members the active data set in which the member resides will

be allocated using the TSO ALTLIB facility and then the member executed, along with any

passed optional parameters.

For ISPF Panels and ISPF Skeletons the active data set in which the member resides will

be allocated using the ISPF LIBDEF facility then then the panel Displayed or Selected

based upon the parameters provided to TRYIT. If there are any errors in the panel or

skeleton an ISPF message will be displayed and the error may then be corrected using

ISPF Edit and TRYIT used once again to verify the panel or skeleton - all without the need

to split the screen and invoke ISPF Test.

http://lbdsoftware.com/ispftools.html
http://www.cbttape.org/

6 June 2021 ISPF Developer Tips/Tricks Page 101

Note there are limitations to the Skeleton testing as variables and imbed tables may not be

available.

Because of the use of ALTLIB or LIBDEF the member being tested will be able to find

subroutines or other ISPF Panels providing they reside within the data set being edited thus

allowing an entire package to be developed, updated, and/or tested, in less critical libraries.

The type of member being edited is dynamically determined with a default of REXX Exec

assumed if all the tests fail. The tests include:

• The data set suffix

- Assembler: ASM ASSEM

- CLIST: CLIST, SYSPROC, CMDPROC

- REXX: EXEC, REXX, SYSEXEC

- Panel: PANEL, PANELS, ISPPLIB

- Skels: SKEL, SKELS, ISPSLIB

• CLIST: Look for PROC followed by a number on record 1

• REXX: Look for the word REXX in record 1

• Panel: Look for any of these in record 1

•)ATTR)PANEL)CCSID)PROC)BODY)INIT)REINIT ..PREP:

• JCL: First record starts with //

This provides a very easy method for iterative testing and updating of the member until the

member works as desired.

Usage

Use TRYIT from any ISPF Edit command line while editing a CLIST, REXX Exec, or ISPF

Panel. The syntax is:

 TRYIT optional-parms

The optional-parms are:

? to display the ISPF Tutorial

For CLISTs and REXX Execs any parameters that the member being edited would need to

have passed to it.

For Assembler there are no supported options currently.

For ISPF Panels one, or more, of the following:

• APPL followed by a 1 to 4-character application id to be used when SEL is specified

to select the panel

• POP will cause the panel to be displayed as a popup

- optionally POP may be followed by a row and column to be used for the

popup

• SEL will Select the panel instead of just Displaying it

• TUT will display the panel as an ISPF Tutorial

• default is to just display the panel

Example:

Command ===>tryit opt1 opt2

6 June 2021 ISPF Developer Tips/Tricks Page 102

Upon completion of the processing of the member a message is displayed in the upper

right with a return code or short message with a long message, available by pressing PF1

(Help), with more information. For CLISTs and REXX Execs the return code is whatever the

CLIST or REXX Exec return while for ISPF Panels the message is either a zero-return code

if there are no problems or the short and long error messages generated by the ISPF

Display, Selection, or Tutorial services.

For Assembler programs upon completion of the assembly the assembly listing will be

displayed using ISPF browse. If a load library is specified under the link edit options, then

after the linkedit the linkedit listing will also be displayed using ISPF Browse. The linkedit

will only occur if the assembly completes with a return code less than 8.

Download from http://lbdsoftware.com/ispftools.html

http://lbdsoftware.com/ispftools.html

6 June 2021 ISPF Developer Tips/Tricks Page 103

Other Tools of Note (meaning they are worth checking out)
These are useful tools that you should consider installing. All are open source (meaning

free) and each will help with your application development in some way:

PDS (the Swiss Army Knife of Utiltiies)
Get this on the CBTTape Site in File 182 – www.cbttape.org – and be sure to check the

updates page as a new update may have been released after the most recent CBTTape

‘Tape’ was cut. This utility, which works in native TSO, includes an extensive ISPF dialog

and more sub-commands that you will ever be able to remember. One of the many

powerful features is the ability to subset the list of members by a wide variety of different

criteria, and then to operate on that member group using any of the dozens of sub-

commands.

PDSEGEN
This is an excellent ISPF dialog that fully supports working with PDSE Version 2 Member

Generations. While not as extensive in the sub-command area as PDS, this tool supports

over almost 2 dozen line commands and over a dozen primary commands. Support is

included to copy a PDSE, with all generations, from one PDSE to another. Another

capability currently not supported by IBM is the ability to unload a PDSE with all

generations and then reload it. Note that PDSEGEN does not support load libraries, but

then why would anyone use member generations in a load library since there is no way to

access a generation other than the base (generation 0) module.

ISPFCMD
This tool can be found at www.lbdsoftware.com, or in File 312 at www.cbttape.org, and is

used to add your own ISPF commands to the sites ISPF command table dynamically. This

can be very helpful if you need to add a command that your ISPF sysprog is not willing to

install, or to install something that is unique for you.

Here are two useful commands to add using ISPFCMD:

"%ispfcmds * ivar 0 select cmd(%rxivar &zparm)" ,

 "\ Display ISPF Variable"

 "%ispfcmds * rvar 0 select cmd(%rxrvar &zparm)" ,

 "\ Display REXX Variable"

And the code behind these are:

RXIVAR and RXRVAR

IVAR:

/* ------------------------- rexx-------------------------- *

 * IVAR - display the contents of the ispf variable that is *

 * passed as an argument. *

 * -- */

arg var

address ispexec 'vget ('var zapplid')'

say 'Requested variable' var 'in ISPF Applid' zapplid 'value is:'

say ' '

interpret 'str ='var

say '>'str'<'

http://www.cbttape.org/
http://www.lbdsoftware.com/
http://www.cbttape.org/

6 June 2021 ISPF Developer Tips/Tricks Page 104

REXXVAR:

/* ---------------------- REXX -------------------------- *

 | Display any REXX variable, or evaluate and display any |

 | REXX expression. |

 * -- */

 parse arg opt

 interpret say opt

Then from any ISPF command line enter IVAR or RVAR thus:

 Menu Utilities Compilers Options Status Help

 --

 ISPF Primary Option Menu

 Option ===> ivar zuser

 More:

 0 Settings Terminal and user parameters

And get:

Requested variable ZUSER in ISPF Applid ISR value is:

 >LBDYCK<

Or:

 Menu Utilities Compilers Options Status H

 --

 ISPF Primary Option M

 Option ===> rvar sysvar('sysuid')

 More:

 0 Settings Terminal and user parameters

And get:

LBDYCK

STEPLIB (1.2)
On CBTTAPE file 452 is a free, fully functional, Dynamic STEPLIB command. This

command has been verified to work with z/OS 2.1, 2.2, 2.3, and 2.4. It can be very helpful

when installing ISPF applications in their own libraries where LIBDEF ISPLLIB doesn’t

always work.

6 June 2021 ISPF Developer Tips/Tricks Page 105

Useful Websites
CBT Tape: www.cbttape.org

This is a repository of 100’s of collections of tools contributed over decades by

individuals from all over the world. The vast majority come with source and can be

used ‘out of the box’ or as examples to learn from.

Lionel Dyck’s site: www.lbdsoftware.com

This site has many of the tools referenced in this document and many others.

Primarily for use with ISPF and focused on improving the productivity of both end

users and systems programmers.

The Rexx Language Association: www.rexxla.org

The Rexx Language Association (RexxLA) is an independent, non-profit

organization dedicated to promoting the use and understanding of the Rexx

programming language.

Rexx Tutorial: https://www.tutorialspoint.com/rexx/

Learn Rexx for absolute beginners.

http://www.cbttape.org/
http://www.lbdsoftware.com/
http://www.rexxla.org/
https://www.tutorialspoint.com/rexx/

